Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

A Desktop-Sized, 10 Terawatt Laser

By atesmeh | October 4, 2013

A compact new generation optical amplifier has been constructed by physicists from the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the Faculty of Physics of the Warsaw University. The apparatus is extremely efficient and small enough to fit on a desktop and is able to generate over 10 terawatt light pulses.

Can a device with a footprint not larger than half of a desktop produce power a few dozen times higher than that generated by all nuclear power stations worldwide? The answer is: “yes – in a pulse”! A new parametric amplifier constructed in the Laser Centre at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and the Faculty of Physics of the Warsaw University (FUW) allows to produce very short (femtosecond) laser pulses with a giant power of 10 terawatt. The new amplifier represents an important step towards construction of compact, portable, relatively low cost high power laser devices that could revolutionize, e.g., anti-cancer therapies.

 “Theoretically, the efficiency of parametric amplifiers can reach over 50%. In practice, the best amplifiers of this type are operated at an efficiency of about 30%. We have reached this level already now, and what’s more, in a really compact device”, says Dr Yuriy Stepanenko (IPC PAS), the chief constructor of the amplifier, adding: “We still improve our setup. In the coming months we are going to increase the amplifier’s efficiency by another a few per cent on one hand, while on the other we intend to increase the power of laser pulses up to a few tens of terawatts”.

 Most lasers generating ultrashort pulses amplify light using sapphire crystals doped with titanium ions. An external laser is used to pump energy into the crystal, and a fraction of the energy is subsequently taken over by a laser beam being amplified. The method has numerous disadvantages. One of the major ones is that the crystals warm up strongly leading to adverse distortions of the cross section of the laser beam. As a result, the crystals must cool down virtually after each laser shot.

 Luckily, non-linear optical effects can be used to construct amplifiers of a different type. These parametric amplifiers transfer effectively energy directly from the pumping laser beam to the beam being amplified. As the input energy is not stored anywhere, there are no adverse thermal effects, and the amplified pulses have excellent parameters. Parametric amplifiers can amplify light by hundreds of millions of times on an optical path of a few centimeters only. That’s also why they are really small in size, especially as compared with the standards of high power optics. The instrument from the Laser Centre of the IPC PAS and the FUW comfortably fits half of a typical desktop.

 The new amplifier will be used for construction of an x-ray source and to generate experimentally protons and secondary neutrons.

 One of the long-term objectives of the research on parametric amplifiers is to generate laser pulses with power of 200 TW and higher. Such powerful light pulses could be used for accelerating protons to energies that are useful in medical therapies, for instance to selectively kill cancer cells. The existing techniques for proton acceleration require construction of huge and high cost accelerators. High power lasers would allow for significant increase in availability of the state-of-the-art proton therapies, with simultaneous radical reduction of treatment costs for cancer patients.

 The research on the parametric amplifier is financed by the National Centre for Research and Development (Project NR02001910).

The multi-pass optical parametric amplifier NOPCPA (Noncollinear Optical Parametric Chirped Pulse Amplifier) technology has been since 2005 developed in the Laser Centre of the IPC PAS and the FUW in a team headed by Prof. Czesław Radzewicz.

This press release was prepared thanks to the NOBLESSE grant under the activity “Research potential” of the 7th Framework Programme of the European Union.

 The Institute of Physical Chemistry of the Polish Academy of Sciences (http://www.ichf.edu.pl/) was established in 1955 as one of the first chemical institutes of the PAS. The Institute’s scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

You Might Also Like


Filed Under: Rapid prototyping

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more