Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

A Metal Sheet Stamping Simulation Promises Improved Car Part Production

By Kanazawa University | May 12, 2019

Share

The process of stamping metal sheets to create parts used in automotive products such as car doors has received a virtual upgrade in the form of a simulation method devised by Kanazawa University-based researchers. Their simulation can be used to optimize a metal stamping press in its conceptual design stage, thus reducing the costs of physically trialing designs. This method is not only cost-effective, but also more comprehensive than past simulation methods.

To improve fuel consumption, automotive manufacturers have increasingly been looking to fabricate cars using lighter materials than traditional steel. High-strength steel is considered a lightweight alternative, but when sheets of high-strength steel are stamped into shape to fabricate car parts, they are more likely to bend, tear, wrinkle, or become too thin in places compared with parts made of traditional steel.

In a competitive automotive market, it is more important than ever to carry out simulations in advance to optimize tools before building and testing them. Otherwise, the tools may need to be altered over a lengthy and costly period of trial-and-error until they can successfully fabricate high-quality parts. Many components of the tool have an effect on the final product and could therefore be optimized via simulations; however, current simulations are not comprehensive and rarely consider the shape of the stamping stencil (termed the “blank shape”) that the metal sheet is punched through to form the desired shape. Additionally, much research in this area focuses on stamping simple bar- or U-shapes.

“We simulated the stamping of S-shapes into sheet metal. Unlike U-shapes, the stamping of S-shapes can cause the metal parts to twist out of shape, allowing us to study ways of reducing twisting springback,” study co-author Ryoto Ishizuki says.

The researchers came up with a novel way of reducing the twisting of metal sheets by optimizing the shape of the blank shape while also minimizing tearing and wrinkling of the metal sheet. They also simulated how much force to use to clamp the metal sheet in place in the so-called “blank holder” and how it should be varied during the punching process to achieve the best results.

“Sequential approximate optimization using a radial basis function network allowed us to efficiently optimize the blank shape and variable blank holder force trajectory,” first author Satoshi Kitayama says.

Reducing the propensity of high-strength steel parts to twist and bend out of shape after undergoing stamping is a key concern within the car manufacturing industry. The results of this study are therefore anticipated to significantly increase the quality of stamped metal parts.

 


Filed Under: Product design

 

Related Articles Read More >

Read COMSOL News 2021
PCB mills
Basics of printed circuit board milling machines
scilab
The top ten free engineering math software packages
hardcore programming for mechanical engineers
Book Review: Hardcore Programming for Mechanical Engineers, By Angel Sola Orbaiceta

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings