Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

A New Way to Diagnose Brain Damage from Concussions, Strokes & Dementia

By atesmeh | December 11, 2014

Non-invasive CHS technology provides real-time information; Tufts University grants commercial rights to Illinois-based company.

Medford/Somerville, MA – New optical diagnostic technology developed at Tufts University School of Engineering promises new ways to identify and monitor brain damage resulting from traumatic injury, stroke or vascular dementia–in real time and without invasive procedures.

View: Real-Time Information of Brain Damage

Coherent hemodynamics spectroscopy (CHS), developed and published by Tufts Professor of Biomedical Engineering Sergio Fantini, measures blood flow, blood volume, and oxygen consumption in the brain. It uses non-invasive near infrared (NIR) light technology to scan brain tissue, and then applies mathematical algorithms to interpret that information.

“CHS is based on measurements of brain hemodynamics that are interpreted according to unique algorithms that generate measures of cerebral blood flow, blood volume and oxygen consumption,” says Fantini. “This technique can be used not only to assess brain diseases but also to study the blood flow and how it is regulated in the healthy brain.”

Tufts has licensed CHS on a non-exclusive basis to ISS, a Champaign, Ill.-based company that specializes in technology to measure hemoglobin concentration and oxygenation in brain and muscle tissue.

“Potentially the market for CHS is large as it encompasses several applications from the monitoring of cerebrovascular disorders to assessing neurological disorders,” says Beniamino Barbieri, president of ISS. “It reminds me of the introduction of ultrasound technology at beginning of the seventies; nobody back then knew how to utilize the new technology and of course, nowadays, its applications are ubiquitous in any medical center.”

How It Works

CHS uses laser diodes which emit NIR light that is delivered to the scalp by fiber optics. Light waves are absorbed by the blood vessels in the brain. Remaining light is reflected back to sensors, resulting in optical signals that oscillate with time as a result of the heartbeat, respiration, or other sources of variations in the blood pressure.

By analyzing the light signals with algorithms developed for this purpose, Fantini’s model is able to evaluate blood flow and the way the brain regulates it–which is one marker for brain health.

CHS technology has been tested among patients undergoing hemodialysis at Tufts Medical Center. Published research reported a lower cerebral blood flow in dialysis patients compared with healthy patients.

“Non-invasive ways to measure local changes in cerebral blood flow, particularly during periods of stress such as hemodialysis, surgeries, and in the setting of stroke, could have major implications for maintaining healthy brain function,” says Daniel Weiner, M.D., a nephrologist at Tufts Medical Center (Tufts MC) and associate professor of medicine at Tufts University School of Medicine (TUSM), who is a member of the research team.

Josh Kornbluth, M.D., a neurologist at Tufts MC and associate professor of medicine at TUSM, is also working with Fantini to explore CHS’s potential to assess the cerebrovascular state of patients who suffer traumatic brain injury or stroke. They hope to test CHS further among neurological critical care patients.

“Having data about local cerebral blood flow and whether it is properly regulated can allow us to more accurately develop individualized therapy and interventions instead of choosing a ‘one size fits all’ approach to traumatic brain injury, stroke, or subarachnoid hemorrhage,” Kornbluth says.

For more information visit http://www.tufts.edu.

You Might Also Like


Filed Under: M2M (machine to machine)

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more