Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

AI Technology Addresses Parts Accuracy to Improve Additive Manufacturing

By Purdue University | February 7, 2019

Share

One of the key requirements in aircraft manufacturing is achieving precision tolerances, a concern that carries over to additive manufacturing, Researchers at Purdue University and the University of Southern California have developed automated machine learning technology to improve additive manufacturing.

The technology addresses a current significant challenge within additive manufacturing: individual parts that are produced need to have a high degree of precision and reproducibility. The technology allows a user to run the software component locally within their current network, exposing an API, or programming interface. The software uses machine learning to analyze the product data and create plans to manufacture the needed pieces with greater accuracy.

“We’re really taking a giant leap and working on the future of manufacturing,” says Arman Sabbaghi, an assistant professor of statistics in Purdue’s College of Science, who led the research team at Purdue with support from the National Science Foundation. “We have developed automated machine learning technology to help improve additive manufacturing. This kind of innovation is heading on the path to essentially allowing anyone to be a manufacturer.”

Sabbaghi adds. “This has applications for many industries, such as aerospace, where exact geometric dimensions are crucial to ensure reliability and safety. This has been the first time where I’ve been able to see my statistical work really make a difference and it’s the most incredible feeling in the world.”

The researchers have developed a new model-building algorithm and computer application for geometric accuracy control in additive manufacturing systems. This will further enable users to benefit from additive manufacturing, whose competitive advantages include shape complexity, waste reduction and potentially less expensive manufacturing, compared to traditional subtractive manufacturing.

“We use machine learning technology to quickly correct computer-aided design models and produce parts with improved geometric accuracy,” Sabbaghi says. The improved accuracy ensures that the produced parts are within the needed tolerances and that every part produced is consistent and will perform that same way, whether it was created on a different machine or 12 months later.


Filed Under: 3D printing • additive manufacturing • stereolithography, Product design

 

Related Articles Read More >

PCB mills
Basics of printed circuit board milling machines
September 2020 Special Edition: 2020 Additive Manufacturing Handbook
The Decision-Makers’ Guide to Additive Manufacturing: Explore the essentials of today’s AM environment and improve your results
Top 3 reasons why you should consider additive manufacturing today for production parts

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings