Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Air Quality Measurements: New Manufacturing Method for Nano Gas Sensors Opens Doors

By atesmeh | August 20, 2013

Share

Nano-sized gas sensors in mobile telephones that measure the atmospheric humidity are nothing new as such. However, so far it was necessary to rely on complex lithographic methods to produce the required nano-structure of the sensors, and they have the added disadvantage that they do not work well on uneven surfaces. A relatively new approach is the focussed electron beam deposition method — FEBID for short — in which the nano-structures can be “written directly” without requiring any pre- or after-treatment. Following the requisite fundamental research, application-oriented nano-structures have only been produced by FEBID recently on a trial basis.

Together with colleagues from the University of Graz, Harald Plank from the Institute of Electron Microscopy and Nanoanalysis at Graz University of Technology is one of the pioneers of this manufacturing method. The team developed the world’s first FEBID based nanoscopic gas sensor.

Nano Sensors for All Applications

The so far unique nano sensor is not only exceptionally powerful and fast to manufacture, it also has great potential. The totally new manufacturing method also works on uneven surfaces — and as the properties of nano-structures depend crucially on the material, this opens the door to completely new applications.

According to Plank, the team is now planning to functionalize nanoscopic surfaces with the aim of developing very specialized nano sensors that can be integrated in a mobile telephone and are capable of measuring not just the humidity of the air, but also the CO or sulphur content. This new type of nano gas sensor would be particularly interesting for environmentally relevant air quality measurements — for instance for the measurement of exhaust fumes from motor vehicles. Even the measurement of toxic agents with mobile terminals is conceivable.

Finally, a huge advantage is that nano gas sensors manufactured by means of the new method can also be used in liquid environments. As Plank explains, this makes them fit for medical applications — for instance the direct measurement of individual blood components.

For more information visit http://www.tugraz.at/.

TU Graz (2013, August 19). Air quality measurements: New manufacturing method for nano gas sensors opens doors. ScienceDaily. Retrieved August 20, 2013, from http://www.sciencedaily.com¬ /releases/2013/08/130819090123.htm


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings