Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

ALIAS Seeks to Provide Portable, Flexible Autopilot Capabilities

By DARPA | April 23, 2014

Military aircraft have evolved over a period of decades to have ever more automated capabilities, improving mission success and safety. At the same time, these aircraft still present challenging and complex interfaces to operators, and despite demanding training regimens, operators can experience extreme workload during emergencies and other unexpected situations. Avionics and software upgrades can help, but can cost tens of millions of dollars per aircraft, which limits the rate of developing, testing and fielding new automation capabilities for those aircraft.  

To help overcome these challenges, DARPA has created the Aircrew Labor In-Cockpit Automation System (ALIAS) program. ALIAS envisions a tailorable, drop‐in, removable kit that would enable the addition of high levels of automation into existing aircraft to enable operation with reduced onboard crew. The program intends to leverage the considerable advances that have been made in aircraft automation systems over the past 50 years, as well as the advances made in remotely piloted aircraft automation, to help reduce pilot workload, augment mission performance and improve aircraft safety.

“Our goal is to design and develop a full-time automated assistant that could be rapidly adapted to help operate diverse aircraft through an easy-to-use operator interface,” said Daniel Patt, DARPA program manager. “These capabilities could help transform the role of pilot from a systems operator to a mission supervisor directing intermeshed, trusted, reliable systems at a high level.”

As an automation system, ALIAS would execute a planned mission from takeoff to landing, even in the face of contingency events such as aircraft system failures. ALIAS system attributes, such as persistent state monitoring and rapid procedure recall, would provide a potential means to further enhance flight safety. Easy-to-use touch and voice interfaces could enable supervisor-ALIAS interaction. ALIAS would also serve as a platform for enabling additional automation or autonomy capabilities tailored for specific missions.

ALIAS targets advancement in three key technical thrust areas:

(1) Minimally invasive interfaces from ALIAS to existing aircraft: It is anticipated that the ALIAS system would need to operate aircraft functions to provide automated operation. Systems generally confined to the cockpit would support the vision of portability.

(2) Knowledge acquisition on aircraft operations: To support adaptation of the ALIAS toolkit across different aircraft in a short amount of time, it is anticipated the ALIAS system would benefit from the leverage of existing host aircraft procedural information, existing flight mechanics information or models, or other methods of rapidly developing requisite aircraft information.

(3) Human-machine interfaces: A vision for ALIAS is that the human operator provides high‐level input consistent with replanning and mission‐level supervision and is not engaged in lower‐level flight maintenance tasks that demand constant vigilance.

DARPA is interested in interdisciplinary research activities that would culminate in a series of progressive systems demonstrations. These demonstrations would begin with ground-based development and demonstration of a prototype system with one aircraft type and progress to a proof-of-concept flight test involving porting the system to a different aircraft type. The program would culminate in a robust demonstration across an entire flight and responses to simulated emergency situations.

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.