Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

An Anti-Glare, Anti-Reflective Display for Mobile Devices

By American Chemical Society | July 16, 2014

Share

If you’ve ever tried to watch a video on a tablet on a sunny day, you know you have to tilt it at just the right angle to get rid of glare or invest in a special filter. But now scientists are reporting in the journal ACS Applied Materials & Interfaces that they’ve developed a novel glass surface that reduces both glare and reflection, which continue to plague even the best mobile displays today.

Valerio Pruneri and colleagues note that much effort has been poured into anti-reflective and anti-glare technology. In the highly competitive digital age, any bonus feature on a device gives it an edge. But for the most part, that hasn’t included an integrated anti-glare, anti-reflective display. Users still typically have to dish out extra cash for a filter or film — some of questionable effectiveness — to lay on top of their glass screens so they can use the devices in bright light. One of the most promising developments involves layering anti-reflective nano-structures on top of an anti-glare surface. But the existing technique doesn’t work well with glass, the material of choice for many electronic displays, so Pruneri’s team at ICFO (The Institute of Photonic Sciences) in collaboration with Prantik Mazumder’s team at Corning Incorporated set out to find a new method.

On a very fine scale, they roughened a glass surface so it could scatter light and ward off glare but without hurting the glass’s transparency. Then the researchers etched nano-size teeth into the surface to make it anti-reflective. In addition to achieving both of these visual traits, the researchers showed the textured surface repelled water, mimicking a lotus leaf. Although the anti-glare roughening protects the nano-size glass teeth, further research is needed to ensure that the surface can withstand heavy touchscreen use, they say. They add that the method is inexpensive and can easily be scaled up for industry use.

For more information, visit www.acs.org.


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings