Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Automated Painting Of Individual Pieces

By Phys.org | August 1, 2017

Share

Reductions of 20 percent in paint use, 15 percent in energy consumption and 5 percent in production time – the SelfPaint automated painting system offers significant advantages compared to manual painting operations, which have previously been the preferred option. SelfPaint’s biggest advantage could well be that it is also suitable for painting individual pieces, known in industry as batch size 1.

Regardless of the industry, products are becoming increasingly customized; in the long term, production is set to be characterized by batch size 1. When it comes to the painting process, however, businesses are still up against some major challenges in this respect. After all, automation and customized paintwork have never exactly gone hand in hand. Only if numerous identical components need to be painted is it worth programming a painting robot to do the job. But today, such cases are becoming increasingly rare. In fact, in many industries well over half of all components are painted manually – because the extent of variety is simply too great for automation.

Automating painting while conserving resources

Now, the self-programming SelfPaint booth offers companies a solution to this problem for the first time – and opens the door to a wealth of savings. SelfPaint was developed by the Fraunhofer Institutes for Manufacturing Engineering and Automation IPA and for Industrial Mathematics ITWM together with the Fraunhofer-Chalmers Research Centre for Industrial Mathematics FCC in Sweden. “Our SelfPaint technology enables the automated painting of small batches and even single pieces,” says Dr. Oliver Tiedje, IPA group manager and coordinator of the project. “Thanks to this new technology, we save up to 20 percent in paint. This in turn reduces solvent emissions by 20 percent. What’s more, the booths consume 15 percent less energy and complete the work 5 percent faster than conventional painting processes.” A further benefit is that the automated process also outperforms manual painting operations in terms of reproducibility.

Using simulations to produce perfect paintwork

Automated painting is a five-step process. First of all, the researchers use robust state-of-the art systems to produce a three-dimensional scan of the component. Data from this scan forms the basis for a fluid dynamic simulation: customized software simulates the trajectory of the paint particles and then determines the optimum volume of paint and air needed to achieve the required coating thickness. In the third step, the system uses the simulation data to plan the robot path for the painting process. The painting process itself is then carried out. In the fifth and final step, the quality of the paintwork is inspected to check that the required coating thickness been achieved. “For the quality control checks we apply terahertz technology, in other words a beam of light at a wavelength that lies between microwave and infrared. This enables us to measure wet, colored paint without actually touching it,” says Joachim Jonuscheit, deputy department head at Fraunhofer ITWM. The idea is for this whole process to be automated in everyday painting operations: robots will scan, paint and check the quality of the paintwork – all without human intervention.

While researchers from Fraunhofer IPA are coordinating the project and focusing on both the painting technology and the simulation of paint particles close to the atomizer, their colleagues in Sweden are simulating particle behavior close to the work piece and working on the automated path planning. More specifically, they are calculating how the droplets of paint move through the air, where they lay down on the target object and the thickness of the resulting layer of paint. At Fraunhofer ITWM, researchers are pursuing the 3-D scanning technology and measurement of the coating thickness for quality control purposes. The individual modules are already complete. Now, the researchers are working to combine the individual steps to form one fully automated process. Expected to be completed in late 2018, the finished prototype is set to help increase the degree of automation and flexibility of painting technology in production.


Filed Under: Industrial automation

 

Related Articles Read More >

Festo and the power of worker upskilling at the Oracle Industry Lab
Five ways to drive ROI from personnel and cobot investments
Safety Air Guns use engineered air nozzles for high performance
EXAIR’s new no drip siphon fed spray nozzle coats, cools and cleans

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings