Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Building the Ultimate Flying Machine

By atesmeh | March 4, 2014

Share

Jet engines come in all shapes and sizes. Fighter jets use sleek and narrow supersonic engines called low-bypass turbofans to generate enormous thrust. But they also guzzle plenty of gas. Passenger planes use their bigger and more efficient cousins, called high-bypass turbofans. But they are not nearly as fast.

Now engineers at GE Aviation and the U.S. Air Force Research Laboratory are working on the world’s first engine that combines the best features of both designs. “We are making a generational leap with this technology,” says Dan McCormick, manager for adaptive cycle engine programs at GE Aviation. “We are looking at speed and performance, but also fuel savings of 25 percent. That extra fuel could increase how far a military jet flies by up to 35 percent. That’s huge.”

The new design is called “adaptive cycle” engine. It can switch between high power and high efficiency modes. “It’s all about getting as much work as we can out of every drop of jet fuel we burn,” McCormick says.

The idea dates back to the 1960s, when jet engine pioneer Gerhard Neumann realized that he could manage jet engine performance by controlling the amount of air that flows through the engine core. More flow yields more thrust and speed (that’s good for fighter jets); less flow saves fuel.

GE’s adaptive cycle engine automatically flips between the two modes and gives fighter pilots the speed they need during dogfights, and the fuel savings when they are flying patrols. “We want the engine to take care of itself and let the pilot focus on the mission,” McCormick says. “When the pilot says ‘I’m out of danger, I want to cruise home,’ the engine reconfigures itself.”

In the 1990s, GE engineers built and flight-tested an early prototype of a variable engine, called YF120.

The team is now testing GE’s latest adaptive cycle engine design called ADVENT (ADaptive Versatile ENgine Technology), at the company’s aviation plant in Cincinnati, OH. It includes new heat resistant materials called ceramic matrix composites (CMCs) and 3D printed parts.

The team recently achieved the highest temperature ever recorded inside a jet engine core, surpassing engine target temperatures by more than 130 degrees Fahrenheit. This achievement (validated by the Air Force) is a game-changer because more heat equals more power, resulting in greater fuel efficiency.

Adaptive-cycle technology has applications that reach beyond the military. “The latest GE jet engines like the GE9X will use CMCs and 3D printed parts,” says Dave Jeffcoat, ADVENT project manager at GE Aviation. “The tests show that we’ve picked the right technology. We are building on a solid foundation.”

For more information visit www.gereports.com.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design
Air Force Jet
How drones are advancing metrology for fighter jets

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings