Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Carbon Sponge Could Soak up Coal Emissions

By Monash University | February 12, 2013

Share

Emissions from coal power stations could be drastically reduced by a new, energy-efficient material that adsorbs large amounts of carbon dioxide, then releases it when exposed to sunlight.

In a study published today in Angewandte Chemie, Monash University and CSIRO scientists for the first time discovered a photosensitive metal organic framework (MOF) – a class of materials known for their exceptional capacity to store gases. This has created a powerful and cost-effective new tool to capture and store, or potentially recycle, carbon dioxide.

By utilising sunlight to release the stored carbon, the new material overcomes the problems of expense and inefficiency associated with current, energy-intensive methods of carbon capture. Current technologies use liquid capture materials that are then heated in a prolonged process to release the carbon dioxide for storage.

Associate Professor Bradley Ladewig of the Monash Department of Chemical Engineering said the MOF was an exciting development in emissions reduction technology.

“For the first time, this has opened up the opportunity to design carbon capture systems that use sunlight to trigger the release of carbon dioxide,” Associate Professor Ladewig said.

“This is a step-change in carbon capture technologies.”

A promising and novel class of materials, MOFs are clusters of metal atoms connected by organic molecules. Due to their extremely high internal surface area – that could cover an entire football field in a single gram – they can store large volumes of gas.

PhD student Richelle Lyndon and lead author of the paper said the technology, known as dynamic photo-switching was accomplished using light-sensitive azobenzene molecules.

“The MOF can release the adsorbed carbon dioxide when irradiated with light found in sunlight, just like wringing out a sponge,” Ms Lyndon said.

“The MOF we discovered had a particular affinity for carbon dioxide. However, the light responsive molecules could potentially be combined with other MOFs, making the capture and release technology appropriate for other gases.”

The researchers, led by Professor Matthew Hill of CSIRO, will now optimise the material to increase the efficiency of carbon dioxide to levels suitable for an industrial environment.

For more information visit www.monash.edu.au.


Filed Under: Industrial automation

 

Related Articles Read More >

Festo and the power of worker upskilling at the Oracle Industry Lab
Five ways to drive ROI from personnel and cobot investments
Safety Air Guns use engineered air nozzles for high performance
EXAIR’s new no drip siphon fed spray nozzle coats, cools and cleans

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings