Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Cosmic Glasses For Space Exploration

By Fraunhofer-Gesellschaft | January 4, 2016

Share

The view from above in the furnace interior shows the glass beads which are produced by the Fraunhofer ISC and which are used for experiments in space research. Credit: Fraunhofer ISC

How are asteroids and planets formed from stony particles? This question is being explored in an experiment by scientists from the universities of Münster and Braunschweig. For the investigation, Fraunhofer researchers have developed beads made of a special type of glass. They form the composition of the rock particles as naturally as possible on a small scale.

The earth is 4.57 billion years old – an unimaginable temporal dimension. To understand how the blue planet was first formed long ago, scientists today are analyzing other rock bodies from our solar system, such as fragments of asteroids that have arrived on Earth as meteorites after collisions in space.

According to current knowledge, many planetary bodies were formed through the merger of chondrules – which are silicate beads that are about 0.1 to 3 mm wide. How does this cosmic rock formation process work, though? That is what scientists from the Institute of Planetology at the Westphalian Wilhelms University of Münster and the Technical University of Braunschweig are investigating in unique experiments. They are being supported by researchers at the Fraunhofer Institute for Silicate Research ISC in Würzburg. The scientists have developed a special glass for the project and formed tiny beads from it to represent the chondrules as realistically as possible.

Special melting and crystallization behavior

Previous findings indicate that the original particles had the consistency of hot, liquid glass before they aggregated into larger conglomerates of rock, cooled down and crystallized. “This glass is very different from the material composition of technical glasses with which we are usually working,” explains Dr. Martin Kilo, Head of Glass Unit at the ISC. The chemical composition of a glass determines certain physical properties, though, such as the melting and crystallization behavior. Both play a central role in the development process of larger rock bodies. “That’s why we have used modeling programs in advance to calculate which melting conditions prevail for the required compositions, how stable the glass particles are, as well as the temperatures and forms at which they crystallize,” says Dr. Kilo. Another challenge was to give the glass particles their spherical shape. To do so, the experts use two different procedures.

In the first approach, rough glass gravel is prepared, sifted to the right size and then rounded out by thermal treatment. The second solution is to cut glass plates into small cubes and to grind them mechanically – very similar to the marble production.

For the experiment, the researchers from Würzburg produced several versions of their beads, each of which differs slightly in material composition. These beads were first heated in special melting units in which the temperature and atmosphere can be adjusted precisely. Those beads which had characteristics closest to the theoretical model after this test melting were selected for the project.

Experiments in the drop tower

The research team from the Universities of Münster and Braunschweig now uses the cosmic glass beads from the ISC in experiments at the Center for Applied Space Technology and Microgravity (ZARM) in Bremen: The drop tower which is operated there surrounds a 120-meter-high steel drop tube, in which a high-vacuum is kept. Through a catapult system, the glass beads are shot in a capsule to the tip of the drop tube. As a result, approximately 9.5 seconds of weightlessness are achieved – the same conditions as in space. During this period, the glass beads are heated up to 1100 °C.

During the dropping procedure, the beads can collide and form larger clusters. The experts record the collision behavior with high-speed cameras that colleagues at the TU Braunschweig assess. “Our colleagues from Münster then investigate how the beads merge, whether the clusters are composed of a homogeneous composition or whether the form of the individual beads is still recognizable, and whether and to what extent crystallization results,” Dr. Kilo explains. In the next step, the planetologists will compare the results with observations of meteorites to then draw conclusions about the validity of their theoretical models.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design
Air Force Jet
How drones are advancing metrology for fighter jets

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings