Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Creating an Electrical Conduit Using Two Insulators

By Pacific Northwest National Laboratory | January 14, 2016

Revolutionary new electronic devices, such as those required for next-generation computers, require new and novel material systems. Scientists at the University of Minnesota and Pacific Northwest National Laboratory showed that combining two oxide materials in one particular orientation gives rise to a densely packed sheet of highly mobile electrons. The sheet is created when bound electrons jump across the junction of a neodymium-based oxide, NdTiO3, to a material based on strontium, SrTiO3, and become free. The density of these electrons—the highest ever observed at the junction of two materials—paves the way for a new class of electronic devices.

New kinds of electronic devices that exhibit novel functionalities are constantly being sought after to expand our technology base. One such device, which cannot be fabricated with existing electronic materials, is a high-frequency plasmonic field effect transistor. This device can turn a larger electronic signal on and off very fast, something not achievable with traditional semiconductor materials, such as silicon. The interface between NdTiO3 and SrTiO3 constitutes such a pathway, even though neither oxide conducts electricity as a pure material.

By depositing alternating, ultra-thin layers of NdTiO3 and SrTiO3 on a crystalline surface, and investigating their properties experimentally and theoretically, the researchers demonstrated that a very high density of mobile electrons can be generated and confined within the SrTiO3 layers. The mobile electrons jump from the NdTiO3 layers, where they cannot easily move, into the SrTiO3 layers, where they are free to move.

Why do the electrons jump? A certain number must jump from NdTiO3 into SrTiO3 to stabilize the combined material system. The charges that stabilize the neodymium (Nd) and titanium (Ti) ions in NdTiO3 cannot be reached without electron rearrangement, and part of this rearrangement involves some electrons jumping across the junction into the adjacent SrTiO3 layers. However, when the NdTiO3 layer reaches a certain thickness, it becomes energetically favorable for additional loosely bound electrons in the NdTiO3 layer to spill over into the adjacent SrTiO3 layer, like water running over a waterfall. Once this happens, the SrTiO3 layers become conducting channels with a high density of mobile electrons.

You Might Also Like


Filed Under: M2M (machine to machine)

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more