Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Data Improves Design Of Military Vehicles

By Pailton Engineering | August 13, 2018

Share

Data is a critical asset for military organizations, but this data is only valuable if used effectively. With this in mind, Emma Cygan, design and development engineer at steering system supplier, Pailton Engineering, addresses the need for data-driven design in military vehicle engineering.

The military vehicle sector is rapidly adapting to changing security threats and new technologies. In fact, much of Britain’s Ministry of Defence (MoD) and the US Department of Defence (DoD) procurement activity now uses cloud services, software and technology products involved in the collection and processing of huge reams of data. However, the industry is still at the early stages of making full use of the wealth of information available to it.

Designing with data means that military vehicles are able to take on the rough terrain and turbulent conditions of the real world — with maximum survivability. But, where does this data come from?

Connected military vehicles are generating gigabytes of data from sensor-packed functions including on-board systems that monitor a vehicle’s oil, temperature and fuel consumption, as well as more general performance data, such as speed, distance travelled and location. This data can be used to track vehicles and personnel, and importantly, make intelligent decisions and inform the design of future vehicles.

By using data generated from real-life vehicles, design engineers can make more informed decisions on how to best manufacture a military vehicle.  Instead, real-life vehicle data is used to design, manufacture and test military-grade steering systems against the specified load and frequency data of the real-life application. If the load data is unknown, theoretical calculations and simulation software can also outline loads.

It is not necessarily the static values of the load or frequency data that is of most concern in the design process, considering that most military vehicles are designed to go above and beyond the actual loads and frequencies they will face. Rather, it’s the dynamic nature of the vehicle’s activity — the varying loads, the changeable frequencies and irregular abusive loads that occur during the vehicles life that should be a fundamental consideration.

This use of real-life data takes this dynamism from the qualitative realm, to the quantitative realm, so engineers can use this data when developing a vehicles design.

Data-driven testing

Data-driven design enables data-driven testing.  One of the most important parameters to test for a military vehicle and its parts is the maximum load. With this information you can observe how much force a part can endure, in both tensile and compression, before a failure occurs. Using different rigs to test a range of force applications, forces up to ±400kN can be applied both statically or dynamically.

Moreover, with enough data, you can compile a multitude of loads at their respective frequencies and cycles as part of a dynamic block testing program. This program effectively mirrors the real-life data that is gathered from the vehicle to accurately assess the true fatigue life of the part.

With a variety of loads and frequencies in place, engineers can measure the number of cycles that the parts can endure over time, performing 1,000,000 load cycles in only 1 week. That’s enough to replicate infinite life for a part on a vehicle, meaning lifecycle management decisions can be made in advance.  

As connected military vehicles are generating more data than ever before, it makes sense that these vehicles be produced with meaningful design data at conception, to maximise safety, performance and efficiency.  


Filed Under: Aerospace + defense

 

Related Articles Read More >

Mars helicopter receives Collier Trophy
Flexible rotary shafts to power Delta Airlines’ engines powering their first Airbus A321neo aircraft
Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings