Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Discovery of Field-Induced Pair Density Wave State in High Temperature Superconductors

By Max Planck Institute for Chemical Physics of Solids | June 12, 2019

Share

Superconductors are quantum materials that are perfect transmitters of electricity and electronic information. Although they form the technological basis of solid-state quantum computing, they are also its key limiting factor because conventional superconductors only work at temperatures near -270 °C. This has motivated a worldwide race to try to discover higher temperature superconductors. Materials containing CuO2 crystal layers (cuprates) are, at present, the best candidate for highest temperature superconductivity, operating at approximately -120 °C. But room temperature superconductivity in these compounds appears to be frustrated by the existence of a competing electronic phase, and focus has recently been on identifying and controlling that mysterious second phase.

Superconductivity occurs when electrons form pairs of opposite spin and opposite momentum, and these “Cooper pairs” condense into a homogeneous electronic fluid. However, theory also allows the possibility that these electron pairs crystallize into a “pair density wave” (PDW) state where the density of pairs modulates periodically in space. Intense theoretical interest has emerged in whether such a PDW is the competing phase in cuprates.

To search for evidence of such a PDW state, a team led by Prof. JC Seamus Davis (University of Oxford) and Prof. Andrew P. Mackenzie (Max Planck Institute CPfS, Dresden) with key collaborators Dr. Stephen D. Edkins and Dr. Mohammad Hamidian (Cornell University) and Dr. Kazuhiro Fujita (Brookhaven National Lab.), used high magnetic fields to suppress the homogeneous superconductivity in the cuprate superconductor Bi2Sr2Ca2CuO2. They then carried out atomic-scale visualization of the electronic structure of the new field-induced phase. Under these circumstances, modulations in the density of electronic states containing multiple signatures of a PDW state were discovered. The phenomena are in detailed agreement with theoretical predictions for a field-induced PDW state, implying that it is a pair density wave which competes with superconductivity in cuprates. This discovery makes it clear that in order to understand the mechanism behind the enigmatic high temperature superconductivity of the cuprates, this exotic PDW state needs to be taken into account, and therefore opens a new frontier in cuprate research.


Filed Under: Product design

 

Related Articles Read More >

Read COMSOL News 2021
PCB mills
Basics of printed circuit board milling machines
scilab
The top ten free engineering math software packages
hardcore programming for mechanical engineers
Book Review: Hardcore Programming for Mechanical Engineers, By Angel Sola Orbaiceta

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings