Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Drone of the Week: ‘Buggy’ Drone Can Perch on Ceilings and Walls

By Sarah Goncalves | May 17, 2016

Share

Students at Stanford’s Biomimetics and Dexterous Manipulation Laboratory have been working on designing an unmanned aircraft that can effortlessly alight on walls or ceilings. Because quadcopters can only hover in the air for tens of minutes at a time, “perching” would increase the drone’s endurance; with its motors shut off, the drone’s sensors can collect more data from a fixed vantage point, such as a disaster site or a battlefield.

To accomplish this buggy behavior, project researchers outfitted a commercial quadcopter with a gripping system centrally located between all four rotors. When the aircraft hits the wall at reasonable velocity, two sets of microspines (hardened steel spikes on a suspension) are dragged along the surface (catching onto its tiny bumps and grooves) in opposite directions. This produces a tight grip, enabling the drone to land on vertical or angled planes.

As graduate student, Hao Jiang, told IEEE Spectrum: “The opposed-grip strategy for microspines is just like a human hand grasping a bottle of water, except that while humans require some macroscopic curvature to get our fingers around both sides of an object, the microspines can go deep into the micro-features of a rough surface and latch on those tiny bumps and pits.”

For the drone to take off, Hao and his team added spines to the quadcopter’s tail, which, again, catch on the surface’s bumps and grooves as the quadcopter falls away. The aircraft can then pivot away from the surface and fly away.

“We’re excited by the recent advances in perching and are hoping to refine our approach even further, so that people can start putting sensors where they need them the most,” Jiang said.


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings