Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Drones Give Scientists New Self-Service Approach

By Arizona State University | February 12, 2016

Share

Earth and environmental scientists have often had to rely on piloted aircraft and satellites to collect remote sensing data, platforms that have traditionally been controlled by large research organizations or regulatory agencies.

Thanks to the increased affordability and dramatic technological advances of drones, or Unmanned Aerial Vehicles (UAVs), however, earth and environmental scientists can now conduct their own long-term high-resolution experiments at a fraction of the cost of using aircraft or satellites.

“UAVs are poised to revolutionize remote sensing in the earth and environmental sciences,” says Enrique Vivoni, hydrologist and professor at Arizona State University’s School of Earth and Space Exploration and Ira A. Fulton Schools of Engineering. “They let individual scientists obtain low-cost repeat imagery at high resolution and tailored to a research team’s specific interest area.”

Vivoni’s own research has focused on rangeland locations in the Sonoran and Chihuahuan deserts, which cover large expanses of northern Mexico and the U.S. Southwest. Using UAVs in these areas has allowed for improved studies on land-atmosphere exchanges and vegetation-runoff interactions.

Once used exclusively for military application, UAV’s now offer many civilian uses. Their advances in flight control, robotics and miniaturized sensors, are providing an unprecedented opportunity for high-resolution data collection.

“The biggest challenge for earth and environmental scientists has been obtaining high-resolution [data for] characterizations and predictions,” says Vivoni.

Both fixed wing and rotary wing UAVs can be used for ecohydrologic investigations, according to Vivoni. Researchers can also use quad-copters with photo cameras or video cameras, such as the Phantom series.

Vivoni will give his talk “Ecohydrology with Unmanned Aerial Vehicles” on February 13 at the American Association for the Advancement of Science (AAAS) 2016 Annual Meeting in Washington, D.C.

The presentation summarizes his work with associate professor Srikanth Saripalli of the School of Earth and Space Exploration, graduate students Nicole Pierini, Cody Anderson and Adam Schreiner-McGraw as well as collaborators from the Agriculture Research Service of the U.S. Department of Agriculture Jornada Experimental Range.

“We believe unmanned aerial vehicles can fundamentally change how ecological and hydrological science is conducted and offer ways to merge remote sensing, environmental sensor networks and numerical models,” Vivoni says.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Mars helicopter receives Collier Trophy
Flexible rotary shafts to power Delta Airlines’ engines powering their first Airbus A321neo aircraft
Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings