Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Engineers Build Carbon-Free Supercapacitor

By Brooks Hays, United Press International | October 11, 2016

Share

Today’s supercapacitors, energy storage devices capable of quickly delivering a large charge, feature carbon-derived components — the production of which requires harsh chemicals and large amounts of energy.

Recently, scientists at MIT built a supercapacitor without carbon. In place of carbon, scientists deployed metal-organic frameworks, or MOFs.

“We’ve found an entirely new class of materials for supercapacitors,” Mircea Dincă, an MIT associate professor of chemistry, told MIT News.

MOFs are porous, sponge-like materials with a lot of surface area — an important quality for supercapacitor materials. Unfortunately, MOFs aren’t all that conductive, another important quality.

“One of our long-term goals was to make these materials electrically conductive,” Dincă said.

It’s a goal some scientists thought was impossible.

Though MOFs don’t conduct electricity very well, they do conduct ions, positively charged atoms and molecules. Ion conductivity is a key component of high-functioning electrode. The quality gave researchers hope that an MOF could be used in supercapacitors.

Through trial and error, researchers were able to develop an electrically conductive MOF using nickel.

When researchers made a supercapacitor using the novel material, they matched the performance of today’s best carbon-based supercapacitors. In some respects — like its ability to withstand many charge-discharge cycles — it outperformed commercial supercapacitors.

Though the production of MOFs currently requires the use of rather expensive materials, the production process involves fewer toxic chemicals.

Researchers hope their findings — detailed in the journal Nature Materials — are just the beginning. The MOF used by Dincă and his research partners boasts one of the smaller surface areas of the class. New and improved MOFs could offer even greater capacity.


Filed Under: Capacitors, Materials • advanced

 

Related Articles Read More >

Self-lubricating and wear-resistant: igus bar stock for food, continuous operation and high media resistance
Minnesota Rubber and Plastics announces plans for new Innovation Center
The importance of resin selection
EXE014 - Image 1
Composite materials help place Italian race team in pole position

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings