Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Engineers Warm NASA’s Webb Telescope As End Of Cryogenic Testing Nears

By Phys.org | September 27, 2017

Share

The temperature of Chamber A at NASA’s Johnson Space Center in Houston has begun to rise, signaling the beginning of the end of James Webb Space Telescope’s cryogenic testing.

On Sept. 27, engineers began to warm Chamber A to bring the Webb telescope back to room temperature—the last step before the chamber’s massive, monolithic door unseals and Webb emerges in October. Everyone can watch the temperature ofChamber A rise during the next few weeks by checking out the temperature overlay on the online Webbcam. The overlay shows the temperature of the gaseous helium shroud, the innermost of two shrouds that were used to cool the telescope to cryogenic (extremely cold) temperatures. The two shrouds are thin, cylindrical, metal shells that envelope the telescope.

“Engineers will perform the warming gradually … to ensure the safety of the telescope, its science instruments, and the supporting equipment,” said Randy Kimble, an integration and test project scientist for the Webb Telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Once the chamber and its contents are warmed to near room temperature, engineers will begin to pump gaseous nitrogen into [the chamber] until it is once again at one atmosphere of pressure (at sea level) and no longer a vacuum.”

The engineers are using heaters to incrementally warm the inside of the chamber. In addition to this, they will warm the two enveloping shrouds, which previously had frigid cryogens (substances used to produce extremely cold temperatures) flowing through them.

In addition to the heaters, the engineers will gradually raise the temperature of the helium gas flowing through the innermostshroud. Carl Reis, the test director for Webb’s cryogenic testing at Johnson, said the temperature of that shroud, which is the temperature displayed on the Webbcam overlay, will reach about 68 degrees Fahrenheit (about 20 degrees Celsius / 293 kelvins) before the Chamber A door opens. He added that the engineers will stop the flow of liquid nitrogen into the outermost shroud,allowing the liquid nitrogen already inside the shroud to “boil off” as it warms. Liquid nitrogen begins to evaporate at about minus 321 degrees Fahrenheit (about minus 196 degrees Celsius / 77 kelvins).

The team tested Webb in the airless cold of Chamber A because, in the vacuum of space, the telescope must be kept extremely cold in order to be able to detect the infrared light from very faint, distant objects. Warm objects emit infrared radiation, and any excess warmth could givefalse signals to the telescope. The cryogenic testing ensured all of Webb’s components, including its science instruments and mirrors, worked as expected in a space-like environment.

Webb next journeys to Northrop Grumman in Redondo Beach, California, where it will be integrated with the spacecraft and sunshield, thus forming the completedobservatory. Once there, it will undergo more tests duringwhat is called “observatory-level testing.” This testing is the last exposure to a simulated launch environment before flight and deployment testing on the whole observatory.

The James Webb Space Telescope, the scientific complement to NASA’s Hubble Space Telescope, will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).


Filed Under: Aerospace + defense

 

Related Articles Read More >

Mars helicopter receives Collier Trophy
Flexible rotary shafts to power Delta Airlines’ engines powering their first Airbus A321neo aircraft
Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings