Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Ensuring safe & reliable connector designs

By Sponsored Content | September 4, 2020

Share

Ideally, your connectors perform to their rated lifecycles. For industrial machinery, improper designs and other factors can cause connectors to fail prematurely, which can cause costly machine damage. Here’s a look at some common causes of failure and how to prevent them.

Failure is not an option in aircraft connectors. Illustration courtesy of Cleaver Brinkerhoff.

Wear and tear — Like the example above, repeated connection and disconnection of a connector can cause the metal on the contacts to wear and corrode if exposed to water, dust, dirt and other harsh elements. As a result, the mating pins may not properly engage when inserted into the connector shell. Always choose connectors rated for the required mating cycles you will need.

Improper selection — Environments where there may be moisture ingress require special connectors. If a standard connector is used in place of one with an IP68 or IP69 rating or a hermetic design, water can cause the connector to fail. Choosing an undersized connector can also reduce efficiency, thus making the connector work harder to keep up with demand. This will decrease connector life.

Extreme temperatures — If connectors are not rated for extremely high or low temperatures, they will eventually fail. If not rated for high temperatures, the insulation fails and conductivity will also spike. If operated at continued high temperatures, these spikes will add to the temperature elevation, which can cause corrosion and eventually, reduced contact force. This can impact the electrical signal traveling through the connector and cable assembly, which in turn can create an open circuit.

While cold temperatures do not impact connectors as harshly as hot temperatures do, low-temperature designs should be considered if you know your application will require them. Exposure to continued low-temperatures can cause tin-plated connector materials to soften, which in turn increases contact resistance. In addition, cold temperatures can impact other parts of the connector, like making plastic shells go brittle.

Improper design and installation — If an application will experience shock, vibration and other damaging motions, it is important to find secure designs that create a strong latch. If not securely mounted, the connector contacts, the mating shells and even the cable could suffer damage. In addition, connector and cable assemblies must have proper strain relief and installation routing — using guided troughs, cable carriers and cable glands help to ensure rated assembly life.

Download eBook

 

Sponsored content by Mill-Max


Filed Under: Sponsored Content
Tagged With: millmax
 

Related Articles Read More >

Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
Epoxy Certified for UL 1203 Standard
The Importance of Industrial Cable Resistance to Chemicals and Oils

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings