Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Explaining Why the Universe Can Be ‘Transparent’: Universe’s Reionization is Based on a Galaxy’s Dust Content

By University of California - Riverside | September 13, 2016

Two papers published by an assistant professor at the University of California, Riverside and several collaborators explain why the universe has enough energy to become transparent.

The study led by Naveen Reddy, an assistant professor in the Department of Physics and Astronomy at UC Riverside, marks the first quantitative study of how the gas content within galaxies scales with the amount of interstellar dust.

This analysis shows that the gas in galaxies is like a “picket fence,” where some parts of the galaxy have little gas and are directly visible, whereas other parts have lots of gas and are effectively opaque to ionizing radiation. The findings were just published in The Astrophysical Journal.

The ionization of hydrogen is important because of its effects on how galaxies grow and evolve. A particular area of interest is assessing the contribution of different astrophysical sources, such as stars or black holes, to the budget of ionizing radiation.

Most studies suggest that faint galaxies are responsible for providing enough radiation to ionize the gas in the early history of the universe. Moreover, there is anecdotal evidence that the amount of ionizing radiation that is able to escape from galaxies depends on the amount of hydrogen within the galaxies themselves.

The research team led by Reddy developed a model that can be used to predict the amount of escaping ionizing radiation from galaxies based on straightforward measurements on how “red,” or dusty, their spectra appear to be.

Alternatively, with direct measurements of the ionizing escape fraction, their model may be used to constrain the intrinsic production rate of ionizing photons at around two billion years after the Big Bang.

These practical applications of the model will be central to the interpretation of escaping radiation during the cosmic “dark ages,” a topic that is bound to flourish with the coming of 30-meter telescopes, which will allow for research unfeasible today, and the James Webb Space Telescope, NASA’s next orbiting observatory and the successor to the Hubble Space Telescope.

The research ties back to some 400,000 years after the Big Bang, when the universe entered the cosmic “dark ages,” where galaxies and stars had yet to form amongst the dark matter, hydrogen and helium.

A few hundred million years later, the universe entered the “Epoch of Reionization,” where the gravitational effects of dark matter helped hydrogen and helium coalesce into stars and galaxies. A great amount of ultraviolet radiation (photons) was released, stripping electrons from surrounding neutral environments, a process known as “cosmic reionization.”

Reionization, which marks the point at which the hydrogen in the Universe became ionized, has become a major area of current research in astrophysics. Ionization made the Universe transparent to these photons, allowing the release of light from sources to travel mostly freely through the cosmos.

The data for this research was acquired through the low resolution imaging spectrograph on the W.M. Keck Observatory.

The collaborators of this research are Charles Steidel (Caltech), Max Pettini (University of Cambridge), Milan Bogosavljevic (Astronomical Observatory, Belgrade) and Alice Shapley (UCLA).

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.