Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

FAQ: What are back EMF and Lenz’s Law as they relate to motors and drives?

By Danielle Collins | July 7, 2016

Share

In electric motor operation, as the armature rotates inside the magnetic field, a voltage is produced. This voltage is commonly referred to as back EMF (electromotive force), since it acts against the voltage driving the motor.

Laws of electromagnetism

One of the fundamental laws governing electric motor operation is Faraday’s Law, which states that any change in the magnetic environment of a coil of wire will cause a voltage (EMF) to be “induced” in the coil. Regardless of how the change is produced—whether by moving the magnet and coil relative to each other or by changing the magnetic field—a voltage will be generated. The equation for this induced EMF is:

Back EMF EquationWorking hand-in-hand with Faraday’s Law is Lenz’s Law, which states that the polarity of the induced EMF is such that it produces a current whose magnetic field opposes the change which produces it. The induced magnetic field inside any loop of wire always acts to keep the magnetic flux in the loop constant. Simply stated, according to Lenz’s Law, the induced voltage (EMF) will oppose the driving voltage. Hence, the negative sign in the equation.

Lenz’s Law applied to motor circuits

Examining a simple motor circuit and considering the conservation of energy, we see that the net voltage across the motor will always equal the supply voltage plus the back EMF:

Net voltage = supply voltage + back EMF

Shown graphically:

back EMF

Supply voltage = 195 V
Back EMF = -45 V
Net voltage across the motor = 150 V

Supply voltage = 195 V.

Back EMF = -45 V.

Net voltage across the motor, calculated according to Ohm’s Law (V = I x R = 10 A x 15 Ω), = 150 V.

This is in agreement with the equation for net voltage:

150 V = 195 V + -45 V

Back EMF in practice

Now let’s look at what happens when a load is applied to a motor.

First, the increased load causes the motor speed to decrease. Back EMF is directly related to speed, so when the speed decreases, so does the induced back EMF. From the equation above, we can see that if there is less back EMF, the voltage (and, therefore, current) across the motor will increase. This additional current produces the extra torque that the motor needs in order to regain its speed with the increased load.


In motor design, back EMF is influenced by the number of turns in the stator windings and by the magnetic field. Motors are designed with a back EMF constant that allows the motor to draw the rated current and deliver the rated torque when running at the rated speed.


Back EMF can have either a sinusoidal (AC) or a trapezoidal (DC) waveform. The shape of the back EMF is important, as it determines the type of drive current and commutation method that should be used for the motor.

 

Circuit diagram and example taken from New South Wales, Department of Education and Training, 2007

Motion Control Tips


Filed Under: Motion Control Tips, Motion control • motor controls

 

About The Author

Danielle Collins

Related Articles Read More >

Motion & Control Enterprises purchases RSA and Global Controls, fourth acquisition this year
49503-ACS Motion-CMxa
ACS Motion Control releases SPiiPlusCMxa EtherCAT motion controller
SDP-SI-040
SDP/SI launches brushless DC motors and motion control products series
PACMotion-servos
High-performance integrated motion control line from Emerson

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings