Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

First Light Achieved with Spectrograph Prototype

By atesmeh | October 12, 2012

Share

Las Cumbres Observatory Global Telescope (LCOGT), a private, nonprofit scientific institution conducting time domain astrophysics and education, and a provider of global telescope resources, achieved first light with their prototype Network of Robotic Echelle Spectrograph (NRES) this week. The event took place earlier in the week at LCOGT’s Byrne Observatory located at the UC Santa Barbara Sedgwick Reserve.

Primarily designed to support the study of exoplanets, the NRES prototype represents over two years of concentrated science and engineering work by Las Cumbres Observatory. Tim Brown, LCOGT Science Director, has overseen the design and funding of the project, while mechanical engineer John Hygelund and astronomy postdoc Jason Eastman have built and tested, and then installed the device.

The NRES, funded through a National Science Foundation Major Research Instrumentation (MRI) grant, will extend the capabilities of the LCOGT 1-meter network with six identical high-resolution (R~53,000), precise (= 3 m/s), optical (380-860 nm) echelle spectrographs.

According to Eastman, “We adopted an optical design that is both simple and conventional in its general approach, similar in concept to spectrographs designed for the Palomar East Arm Echelle, the Lick Automated Planet Finder, and others.” The in-house design enabled Las Cumbres to optimize the spectrograph for a small production run and robotic use. This, because the biggest difference with the NRES will be that there will be six of them, deployed at six geographically distributed sites around the world, and integrated through a global telescope scheduling and control system.

Doubling the Resource

Exoplanet candidates are identified through a variety of means, but most are generated through transit surveys like Kilodegree Extremely Little Telescope (KELT), Hungarian Automated Telescope Network (HATNet), Wide Angle Search for Planets (WASP), Kepler, and COnvection ROtation and planetary Transits (CoRoT). Follow-up by targeted optical telescopes is required to confirm and characterize the exoplanets.

Separating planets from false positives is ef?ciently done with (and often demands) radial velocity (RV) measurements to distinguish the re?ex velocities due to planets (order m/s) from the velocities due to stellar companions (order km/s). In addition, knowing the mass, radius, and temperature of an exoplanet depends on obtaining the same physical properties of its parent star. This requires spectroscopic classi?cation of the star.

The LCOGT Network of Robotic Echelle Spectrographs (NRES) will roughly double the radial velocity observing capacity nationwide, enabling astronomers to vet the many exoplanet candidates generated from current and future surveys.

NRES spectrographs will be deployed as instruments on the LCOGT 1-meter telescope network. Each NRES spectrograph consists of two acquisition/guider units (on two separate 1m telescopes), a simultaneous Thorium Argon and flat-field calibration source, and spectrograph with precise thermal and pressure regulation. The design achieves high optical throughput, wide wavelength coverage, and simultaneous ?ber input from two telescopes.

The Spectrographic Network

The LCOGT 1-meter telescope network is currently being deployed in the southern hemisphere. Three 1-meter telescopes are currently in the installation process at the Cerro Tololo International Observatory (CTIO) in Chile. Three additional 1-meter telescopes are scheduled for deployment at the South Africa Astronomical Observatory, and two for the Siding Spring Observatory in Australia within the next six months.

Following this, deployment will begin at three northern hemisphere sites. The first two are at McDonald Observatory where one 1-meter telescope is currently conducting science observations, and at Teide Observatory in the Canary Islands. A final observatory node will be sited either in Maui, Hawai’i or in Western China.

The global telescope network, operated robotically, provides coverage of 100% of the night sky, and is responsive to events in real time. The NRES is an important extension of the planned photometric instrumentation, enabling astronomers to expand the breadth of observation data.

Future Development

Following full testing of the prototype, the NRES is scheduled to go through final design in the next months and begin production and shop testing during 2013. Deployment will occur during 2014. Brown anticipates scientific use of the instruments to begin in 2014 or 2015.

In addition to LCOGT’s science programs, some data from the spectrographs will be used to drive educational initiatives at Las Cumbres such as the successful Agent Exoplanet. This citizen science application enables anyone to analyse exoplanet observations and investigate different extra-solar planetary systems. Edward Gomez, LCOGT Director of Education sees a deep need for citizen science in astronomy. “We have an excellent opportunity to enable amateur astronomers, students, and the general public to conduct their own science investigations on astronomical data, help validate existing results with new observations, and make new discoveries.”

###

Las Cumbres Observatory Global Telescope is a privately funded, nonprofit observatory focusing on time variable astronomy and education. LCOGT is a leader in exoplanet, supernova, and minor planet research and characterization. LCOGT uses ANSYS software for stress and thermal modeling.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Mars helicopter receives Collier Trophy
Flexible rotary shafts to power Delta Airlines’ engines powering their first Airbus A321neo aircraft
Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings