Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Flight: Research Examines Wing Shapes To Reduce Vortex And Wake

By University of Illinois College of Engineering | May 16, 2018

It’s common to see line-shaped clouds in the sky, known as contrails, trailing behind the engines of a jet airplane.

What’s not always visible is a vortex coming off of the tip of each wing — like two tiny horizontal tornadoes — leaving behind a turbulent wake behind the vehicle. The wake poses a destabilizing flight hazard, particularly for smaller aircraft that share the same flight path.

Recent research at the University of Illinois demonstrated that, although most wing shapes used today create these turbulent wake vortices, wing geometrics can be designed to reduce or eliminate wingtip vortices almost entirely. In the study, the vortex and wake characteristics were computed for three classic wing designs: the elliptic wing, and wing designs developed in classic studies by R.T. Jones and Ludwig Prandt.

“The elliptic wing configuration has been used as the gold standard of aerodynamic efficiency for the better part of a century. We teach our students that it has the optimal loading characteristics and that it’s often used when looking at wing efficiency for say, minimizing drag,” said Phillip Ansell, assistant professor in the Department of Aerospace Engineering at U of I.

In a previous experimental study on optimizing wing configurations, Ansell learned you can gain efficiency of the wing system with a non-elliptic wing profile. “Previous academic studies have shown that, theoretically, there are other designs that actually provide lower drag of a planar wing for a fixed amount of lift generation. But what has been missing is an actual apples-to-apples experiment to prove it.”

In this new research, Ansell, and his graduate student, Prateek Ranjan, used the real data from the previous study to analyze the three wing configurations.

“We chased this down because we saw something curious in our measurements in the earlier experiment. Consequently, in this new study, we simulated the flow about these three wings and saw significant differences in how the vortices and wakes developed from each of the three wing types. The Jones and the Prandtl wing configurations didn’t have wing-tip vortices like the elliptic wing. They had a much more gradual bulk deformation of the whole wake structure, rather than an immediate coherent roll-up. We now know that we can delay the formation of wake vortex structures, and increase the distance it takes a trailing wake vortex to roll up by about 12 times, making it weaker and less of a hazard to the aircraft entering its wake.”

Ansell said this information can be used to re-tailor how formation flight is viewed between aircraft, or to develop a new an ideal configuration for the lift loading for takeoffs and landings, and subsequently reduce the length of separation between aircraft in the same flight path.

“Trailing wingtip vortices tend to take a long time to go away once they form in the atmosphere. So the time it takes for the vortex to dissipate has to be figured into the takeoff time of the next aircraft going in that same path. The motion of the air produced by these vortices can create a hazard for trailing aircraft, as it can be unpredictable and make for dangerous flight regimes. So using the Jones or Prandtl wings would result in much less turbulent air behind a plane,” Ansell said.

You’d think that Ansell’s conclusion is to use only the Jones or Prandtl wing configurations, but it’s not.

“One of the things that first drew me to the topic of aerodynamics is that the right answer always depends on what your constraints are. If you’re building a tiny unmanned vehicle that will fly at a low speed, you’ll get a different solution for design needs than if you’re building an aircraft that will carry people at high altitudes and high speeds. So technically, you could argue that all three wing types are the best solution. The question is, what are your driving constraints, such as wing span and weight, behind selecting one of them?”

Ansell added that this is a basic research study and not intended to advise a specific aircraft designer or company.

“We are looking at how the wing flow behaves and the information can be used to understand how the roll-up process of vortices is produced. This study allows us to be aware of how the wing configuration affects the trailing vortex formation and wake by studying the extreme bounds of immediate and delayed vortex roll-up processes,” Ansell said.

“Interestingly we identified that one of the worst offenders of creating vortices is indeed the elliptic lift distribution, which is also among the most conventional wing design. It has definitely changed the way I talk about the issue in my classes. Instead of simply referring to the flow patterns produced behind the wing as a pair of ‘wingtip vortices,’ I’ve taken to describe the full wake produced as the trailing vortex system.”

You Might Also Like


Filed Under: Motion control • motor controls

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.