Design World

  • Home
  • Articles
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
  • 3D CAD Models
    • PARTsolutions
    • TraceParts
  • Leadership
    • 2020 Winners
    • 2019 Winners
    • 2020 LEAP Awards
  • Resources
    • DIGITAL ISSUES
      • EE World Digital Issues
    • Future of Design Engineering
    • 2020 LEAP Awards
    • MC² Motion Control Classroom
    • Motion Design Guide Library
    • Podcasts
    • Suppliers
    • Webinars
  • Women in Engineering
  • Ebooks / Tech Tips
  • Videos
  • Subscribe
  • COVID-19

For a given motion profile, when are other options for stopping insufficient — and a clutch or brake necessary?

By Lisa Eitel | August 19, 2018

Share

At the core of most motion axes are electric motors. Stopping loads on their axes can be done with the electric motor itself — called internal braking in certain contexts — or with an external clutch or brake. For the former, one simple approach is to simply cut motor voltage input and allow the axis to coast to stop. That’s acceptable where stops are infrequent — from a few times a minute (for designs running off small motors) to a few times an hour (for larger motor installations). Another option is to use controls to generate stopping torque in the motor via regenerative braking t convert kinetic into electrical energy; dynamic braking — the injection of dc current into the stator; or electric reversal as plugging.

But where such approaches are too slow — including all modern motion designs for high throughput — external brakes and clutches are required to get sufficiently quick stops or disengagement. This applies to conveyors, airport-baggage handlers, escalators, and elevators … as well as other axes that make frequent stops and starts — even as few as 10 cycles a minute in some cases. Where stops and starts happen at much higher cycle rates, motor inertia may degrade the quickness with which starts and stops are possible. So here, clutch-brakes are often more suitable — as they disengage the driven load from the motor to allow the former to run even while the brake engages and stops the load. Of course, though we focus on responsiveness here, failsafe design features are another main driver of brake and clutch inclusion.

Mechanical, electric, fluidic, and self-actuated clutches and brakes are suitable for different applications. For example, spring-set brakes benefit motion designs that slow loads with the motor before the brake engages … and they’re suitable as holding mechanisms. Control of electric brakes is easy, and they can keep pace to a thousand cycles per minute. Most air-actuated brakes and clutches are cool-running and hold with minimal input. Friction brakes with drum, disc, and cone geometries deliver e-brake functionality with failsafe holding.

Brake or clutch size and type depend on whether the axis at hand will make emergency stops or softer stops that sacrifice the clutch or brake to protect systems and loads from shock. Or sometimes it’s more essential that the brake deliver soft stops to prevent shifting loads and misalignment. After that, other criteria — cycle rates, thermal capacity, machine envelope, and MRO schedules — dictate final selection.

Miki Pulley’s BXR-LE electric spring-applied brakes are suitable for small and precise servomotor designs. A lightweight design optimizes servodrive performance and efficiency. Its voltage controller means the brake’s power consumption is stepped down to 7 Vdc after a split second of 24 Vdc for actuation. When compared to most other electric brakes, the BXR-LE brake consumes just a third the power (and generates just a third the heat) — though it’s half as thick. Speed is to 6,000 rpm; static friction torque is 0.044 ft.lb. to 2.36 ft.lb. and ambient operating temperature is 14° to 104°F. BXR-LE brake applications include those on end effectors, ballscrew actuators, XYZ positioning tables, and 3D printers.

Some tips: Size clutches and brakes to the machine axis’ motor torque. Where a brake must stop vertical loads, account for how motors can briefly draw current to output in excess of their rated torque. Consult performance curves in manufacturer PDFs for dynamic torque ratings at set speeds to match the brake or clutch to peak motor-output torque. Case in point: Consider an inclined conveyor with regularly spaced on-off cycles. Here, a power-off spring-set brake may suffice to prevent load crashes during power failures. But more complex conveyor installations to position discrete product of varied size — without jerking — may need multiple deceleration rates may need more sophisticated spring-set brake plus drive on the motor for stopping … or even a permanent-magnet brake for quick yet soft starts and stops.

Comparing clutch and torque-limiter functions

Torque limiters are not clutches, as they’re not designed to continuously slip. That’s an important distinction when design engineers are specifying slowing and disengaging technologies for mechanical designs. Some tips for optimal design selection: First consider whether a torque limiter will only protect against catastrophic failure or semi-regular overloads. That will indicate whether an economical friction-style torque limiter is sufficient or if the design necessitates a ball-detent design. The latter is usually more costly but capable of slipping and triggering a limit switch for shutoff and resetting to resume operation. Ball-detent torque limiters here can slip multiple times in their application … unlike friction torque limiters requiring reset.

When applying a torque limiter, confirm whether a zero-backlash design is needed. Note that torque limiters can generate heat at their frictional connections, so upon their activation, system shutdown is key. After it’s activated, the end user should inspect the torque limiter for wear and heat damage. He or she should also check its setting torque … as in some designs, that value will be diminished if the torque limiter has been run too long. As long as the torque limiter is still within design range, it’s safe from exhibiting more and more slipping. With some motion designs, a limit or proximity switch paired with controls can detect when the torque limiter slips — and shuts the system down to let the end user address the issue the torque limiter was protect (or protect against). || Insight into torque-limiter functions provided by KTR engineering services manager Chris Scholz.

Brake modules such as the mayr ROBA brake-checker and the ROBA torqcontrol monitor the condition of safety brakes — and can facilitate smooth deceleration of machines and devices. Shown here is a ROBA brake-checker module that without sensors. Electronics track current and voltage and recognize the movement of the armature disc to assess brake condition as well as temperature, wear, and tension path or tensile force reserve — in other words, whether the electromagnetic brake’s magnet has sufficient force to attract the armature disc. On reaching the tensile force reserve, a warning signal sounds to prompt service. There is a design for ac voltage; a coming version of the module will integrate brake input power supply (and replace a separate rectifier) for switching condition monitoring and brake control in one device.

About Lisa Eitel

Lisa Eitel has worked in the motion industry since 2001. Her areas of focus include motors, drives, motion control, power transmission, linear motion, and sensing and feedback technologies. She has a B.S. in Mechanical Engineering and is an inductee of Tau Beta Pi engineering honor society; a member of the Society of Women Engineers; and a judge for the FIRST Robotics Buckeye Regionals. Besides her motioncontroltips.com contributions, she also leads the production of the quarterly motion issues of Design World.

Tell Us What You Think! Cancel reply

MOTION DESIGN GUIDES

“motion

“motion

“motion

“motion

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Configuration Management: Configuration Integrity IS A Core Driver for Business Success
  • How to Choose a Linear Actuator
  • Create your perfect machine with Advanced Engineering
  • How a ME/EE turned passion for design into his own bike company
  • Everyone Can Save on Cable Costs. Here’s How
  • How and Why You Should Use a Wave Spring for Bearing Preload
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Tweets by @DesignWorld
Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP Awards

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media. Site Map | Privacy Policy | RSS

Search Design World

  • Home
  • Articles
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
  • 3D CAD Models
    • PARTsolutions
    • TraceParts
  • Leadership
    • 2020 Winners
    • 2019 Winners
    • 2020 LEAP Awards
  • Resources
    • DIGITAL ISSUES
      • EE World Digital Issues
    • Future of Design Engineering
    • 2020 LEAP Awards
    • MC² Motion Control Classroom
    • Motion Design Guide Library
    • Podcasts
    • Suppliers
    • Webinars
  • Women in Engineering
  • Ebooks / Tech Tips
  • Videos
  • Subscribe
  • COVID-19
We use cookies to personalize content and ads, to provide social media features and to analyze our traffic. We also share information about your use of our site with our social media, advertising and analytics partners who may combine it with other information that you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more