Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Freeze Fighter: Artificial Blubber Protects Divers in Frigid Water

By Office of Naval Research | September 6, 2018

Share

Diving in icy water is extremely dangerous to humans. Within seconds, arteries tighten, blood pressure and heart rate race, and lungs gasp for air. After only minutes, hyperventilation strikes and arms and legs go numb—signaling the onset of hypothermia.

To protect U.S. Navy divers operating in freezing conditions, the Office of Naval Research (ONR) is sponsoring work to design a wetsuit mirroring the insulating properties of animal blubber—allowing divers to swim in frozen waters for longer periods of time.

The work is being conducted by researchers at the Massachusetts Institute of Technology (MIT) and George Mason University. They’ve developed a wetsuit infused with an artificial blubber layer that can triple the endurance time of divers in frozen lakes, rivers or oceans.

“This kind of research is especially important as more Arctic sea lanes open up and the Navy increases its readiness to operate in that part of the world,” said Maria Medeiros, a program officer in ONR’s Sea Warfare and Weapons Department. “Whether it’s special operations; search and rescue; or ship repair, maintenance and salvage, finding ways to increase divers’ time and effectiveness in the ice is a priority.”

The project is being led by two MIT professors—Dr. Michael Strano and Dr. Jacopo Buongiorno—and focuses on neoprene wetsuits. Neoprene is the most common material used to make wetsuits, and is a synthetic rubber resembling a thick foam with numerous air pockets.

These pockets slow the transfer of heat from the body into the surrounding cold water.

Strano and Buongiorno found that by substituting air with various heavy inert gasses—which are non-toxic, don’t have negative chemical reactions, and don’t burn or explode—they created a more efficient, artificial blubber layer within the wetsuit. This increased suit effectiveness in 10-degree-Celsius water from under an hour to multiple hours.

To do so, Strano and Buongiorno placed a neoprene wetsuit in a sealed, specially designed tank the size of a beer keg—and pumped the container with heavy inert gasses for several hours.

Laboratory tests showed the newly pressurized wetsuit kept its insulating properties for over 20 hours after treatment, far longer than divers usually spend in frigid waters. The treatment also could be done in advance of a dive, with the wetsuit placed in a bag to be opened just before use. In such cases, the 20-hour countdown didn’t start until the suit was removed from the bag.

“The great thing about this research is that you don’t have to recreate neoprene from scratch,” said Strano. “You can take a wetsuit from a closet, pump the gas into it and transform it into a super fabric.”

The inspiration behind Strano and Buongiorno’s research stems from a conversation they had with Navy SEALs two years ago, when they participated in a Department of Defense science study. The warfighters told the MIT professors about the perils of diving in icy waters and how they urgently needed longer-lasting wetsuit protection.

Strano and Buongiorno examined diverse animal methods for enduring cold water—air pockets in fur or feathers (otters and penguins), internally generated heat (mammals and fish), or a layer of insulating material slowing heat loss from the body (seal and whale blubber). Their wetsuit design reflects the latter two methods.

While their laboratory tests and simulations have been successful, Strano and Buongiorno hope to test the wetsuit further during in-water demonstrations involving Navy and civilian divers.

The wetsuit research falls under ONR’s Naval Enterprise Partnership Teaming with Universities for National Excellence (NEPTUNE) program, which helps the Navy and Marine Corps discover ways to improve energy conservation, generate renewable energy and implement energy-efficient technologies—while giving active-duty military, military students and veterans the chance to immerse themselves in university-level research.


Filed Under: Materials • advanced

 

Related Articles Read More >

Self-lubricating and wear-resistant: igus bar stock for food, continuous operation and high media resistance
Minnesota Rubber and Plastics announces plans for new Innovation Center
The importance of resin selection
EXE014 - Image 1
Composite materials help place Italian race team in pole position

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings