Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Heat Treatment Promises Lighter and Stronger Aluminium Parts

By CORDIS | December 12, 2018

The High Pressure Die Cast (HPDC) process of manufacturing works by forcing molten metal under high pressure into a mold cavity. Most die castings are made from non-ferrous metals, such as zinc, copper, or aluminium. While equipment costs often limit its application to high-volume production, it does offer higher-speed of production for complex shapes than any other manufacturing method, as well as durability and dimensional stability, with added strength and weight advantages.

However, despite HPDC being a highly productive process it precludes conventional heat treatment, as trapped gas results in blistering – necessitating the development of new advanced procedures.

The EU-supported HardALU project was established precisely to create an alternative option, resulting in a thermal treatment, with a homogeneous temperature over the entire surface of the piece, with no more than a 3 ºC deviation across the part’s different surface areas.

The fluidized bed technology

High-performance lightweight aluminium components are particularly important for the automotive industry where they could for example replace heavier iron castings such as those used for engine blocks, reducing weight. Yet, as they cannot conventionally be treated with heat (due to blistering), components have typically had to be of greater thicknesses, and so greater weight, with implications for the economics of transport solutions, as well as their environmental impact.

At the heart of the HardALU approach lies the Fluidized Bed (FB) solution. This technology involves sending gas through a bed of fine sand particles creating a fluid-like behavior. Parts can then be submerged into this mix – a process referred to as ‘quenching’ – and thanks to the fact that the surface of the piece is in full contact with the sand in the fluidised bed, it can be treated in a more homogenous way. Temperatures of between 490 °C and 540 °C can be reached in seven to 10 minutes for large engine blocks, for example, with the heat transfer rate three to four times higher than with conventional forced air techniques.

Mr Jaume Tort, the project coordinator recalls that, “This fluidification of the sand proved to be the project’s biggest challenge leading to many tests and modifications. Ultimately we got the sand to fluidify correctly with the support of the University Carlos III in Madrid.” The project also collaborated with the technological center of IK4 Azterlan to test the treated pieces and validate the equipment.

From an environmental point of view, thanks to the technology, pieces can now be treated which could not before. This reduces their thickness, and so weight, resulting in lower vehicle fuel consumption which in turn lowers C02 emissions. Additionally, with treatment time reduced, the electrical consumption used during manufacturing is also reduced.

The system is currently housed within a client’s facilities so that it can be rigorously tested under industrial conditions. This also makes it available for demonstration to potential customers.

“What is especially exciting about the future is that the technology is sparking a wider growth in aluminium die casting for structural parts, such as the shock tower of a car’s suspension, currently made of steel.” Mr Tort reflects. “This is a breakthrough because complex parts like these are very thin and so depend on effective thermal treatment to remain robust and reliable.”

You Might Also Like


Filed Under: Materials • advanced

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more