Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Heterostructure Chip Eyes Moore’s Law

By Megan Crouse | May 2, 2017

Share

Photo Credit: Nature Nanotechnology

Researchers at the University at Buffalo may have found a way to increase the efficiency of 2D semiconductors used for computer chips. Ferromagnetic compound can be used to pull the energy valleys apart and maintain them at different energy levels. This means the separation of valley energies can be increased by 10 times more than what can be done with an external magnetic field.

“Normally there are two valleys in these atomically thin semiconductors with exactly the same energy,” explains Hao Zeng, team lead and professor of physics. “These are called ‘degenerate energy levels’ in quantum mechanics terms. This limits our ability to control individual valleys. An external magnetic field can be used to break this degeneracy. However, the splitting is so small that you would have to go to the National High Magnetic Field Laboratories to measure a sizable energy difference. Our new approach makes the valleys more accessible and easier to control, and this could allow valleys to be useful for future information storage and processing.”

This means the chips will require a very small amount of energy to switch electrons into and out of valleys. It also produces less heat than chips that use electrical charges for the same effect.

In order to separate the valleys without magnetic fields, the team used a two-layered. heterostructure “sandwich” made of a 10 nanometer thick film of magnetic europium sulfide on the bottom and less than 1 nanometer of dichalcogenide WSe2, a transition metal, on the top. This makes it a particularly stable structure for use in nonvolatile memory applications.

At the more extreme end of the list of possible uses is a chance to fly past Moore’s law.

“The reason people are really excited about this, is that Moore’s law [which says the number of transistors in an integrated circuit doubles every two years] is predicted to end soon. It no longer works because it has hit its fundamental limit,” Zeng says.

“Current computer chips rely on the movement of electrical charges, and that generates an enormous amount of heat as computers get more powerful. Our work has really pushed ‘valleytronics’ a step closer in getting over that challenge.”

For now, though, the effect has only been proven to work at 7 degrees Kelvin (-447 F). Unless it’s cold, this type of valley separation only occurs in the university’s results every five or 10 years.


Filed Under: Materials • advanced

 

Related Articles Read More >

Self-lubricating and wear-resistant: igus bar stock for food, continuous operation and high media resistance
Minnesota Rubber and Plastics announces plans for new Innovation Center
The importance of resin selection
EXE014 - Image 1
Composite materials help place Italian race team in pole position

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

April 11, 2022
Going small with 3D printing
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings