Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

High-Precision Control of Printed Electronics

By Linköping University | July 5, 2017

Share

Image credit: Thor Balkhed

Printed electronic transistor circuits and displays, in which the colour of individual pixels can be changed, are two of many applications of ground-breaking research at the Laboratory of Organic Electronics, Linköping University. New groundbreaking results on these topics have been published in the scientific journal Science Advances.

The researchers in organic electronics have a favourite material to work with: the conducting polymer PEDOT:PSS, which conducts both electrons and ions. Displays and transistors manufactured from this polymer have many advantages, which include that they are simple and cheap to manufacture, and the material itself is non-hazardous. It has, however, been difficult to create devices that switch rapidly at a specific voltage, known as the “threshold voltage.” This gives that it has, so far, been difficult to control the current state of the transistors or the color state of the displays in a precise manner.

“The lack of any threshold in the redox-switching characteristics of PEDOT:PSS hampers bistability and rectification, characteristics that would allow for passive matrix addressing in display or memory functionality” said Simone Fabiano, senior lecturer at the Laboratory of Organic Electronics, LOE, who is the principal author of the article in Science Advances, together with Negar Sani from the research institute RISE Acreo.

More than five years ago a wild idea arose at the Laboratory of Organic Electronics: could you solve this problem by combining electrochemistry with ferroelectricity? Ferroelectric materials consist of dipoles. One end of a dipole has a positive charge and the other a negative charge, and these “ferroelectric” dipoles rotate when they are exposed to an electric field beyond a specific threshold.

Head of the laboratory Professor Magnus Berggren couldn’t let this idea rest, and when he was awarded a research grant from the Knut and Alice Wallenberg Foundation in December 2012 to use freely, this was one of the high-risk projects he chose to invest in.

“We called the research then breakneck research, and here is a result. Our demonstration proves that truly leading research typically take a long time and require considerable patience. Simone Fabiano has done tremendous work here, and refused to give up when others have doubted,” said Berggren.

After many years of tenacious experiments, Fabiano and his colleagues at the Laboratory of Organic Electronics have managed to apply a thin layer of a ferroelectric material onto one electrode in organic electrochemical devices and circuits.

“The thickness of the layer determines the voltage at which the circuit switches or the display changes colour. Transistors are no longer required in the displays: we can control them pixel-by-pixel simply through a thin ferroelectric layer on the electrode,” said Fabiano.

The LOE research group shows in the article that “ferroelectrochemistry,” the combination of ferroelectricity and electrochemistry, can be used in displays in the field of printed electronics and in organic transistors. The scientists envisage, however, many other areas of application.

“Ferroelectrochemical components can easily be integrated into memory matrices and into bioelectronic applications, just to give a couple of examples,” said Fabiano.

The technology is now protected by patents.

“The field of ferroelectrochemistry doesn’t actually exist, but we have achieved success using this combination,” Berggren concluded.


Filed Under: Motion control • motor controls

 

Related Articles Read More >

Motion & Control Enterprises purchases RSA and Global Controls, fourth acquisition this year
49503-ACS Motion-CMxa
ACS Motion Control releases SPiiPlusCMxa EtherCAT motion controller
SDP-SI-040
SDP/SI launches brushless DC motors and motion control products series
PACMotion-servos
High-performance integrated motion control line from Emerson

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings