Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

High-Speed Experiments Improve Hypersonic Flight Predictions

By Michael J. Baker, Sandia National Laboratories | May 3, 2019

When traveling at five times the speed of sound or faster, the tiniest bit of turbulence is more than a bump in the road, said the Sandia National Laboratories aerospace engineer who for the first time characterized the vibrational effect of the pressure field beneath one of these tiny hypersonic turbulent spots.

“The problem is that these patches of turbulence are really fast and really small,” said researcher Katya Casper. “There are thousands of turbulent spots every second in hypersonic flow, and we need really fast techniques to study their behavior.”

The pressure field is key to understanding how intermittent turbulent spots shake an aircraft flying at Mach 5 or greater, Casper said. Hypersonic vehicles are subjected to high levels of fluctuating pressures and must be engineered to withstand the resulting vibrations.

Simply put, being able to characterize and predict these pressure spots leads to better vehicle design.

“The understanding of unsteady pressure fields is extremely important for modeling of hypersonic flight vehicle applications for a variety of national security programs,” said Basil Hassan, senior manager in Sandia’s Advanced Science and Technology Program office.

“This advanced diagnostic development work forms unique datasets for fundamental discovery and model validation at Sandia and has been used to improve flight predictions for several national hypersonic flight programs,” Hassan said.

The pressure footprint of one hypersonic turbulent spot at Mach 6. As turbulent air flows over an object, thousands of such spots occur every second causing severe vibration. Credit: Katya Casper

Over the past several years, Casper’s experiments have progressed from the use of miniature electronic sensors to advanced imaging techniques with pressure-sensitive paint, which is applied to a model tested in a wind tunnel and viewed by specialized cameras to measure the pressure fluctuations optically.

The American Institute of Aeronautics and Astronautics recently cited Casper’s breakthrough in characterizing hypersonic turbulent spots and her work with novel fluctuating pressure instrumentation when announcing earlier this year she had won the organization’s Lawrence Sperry Award, given for notable contributions in the field by a person age 35 or younger.

How turbulent spots vibrate hypersonic vehicles

Casper’s experiments characterizing hypersonic turbulent spots used innovative diagnostic techniques to provide insight into the interaction between pressure fluctuations and vehicle structural response.

With advanced imaging techniques and high-speed sensors, the work showed that transitional pressure fluctuations are generated by intermittent turbulent spots that pass by in a millisecond. As the spots grow, they merge into a fully turbulent layer. The data Casper captured was instrumental in improving predictive computer simulations developed by her colleagues at Sandia.

Using a cone-shaped model with an integrated thin panel embedded with pressure sensors and accelerometers at Sandia’s hypersonic wind tunnel, Casper studied the response, or vibration, to turbulent spots.

When the frequency of the passing turbulent spots matched the natural structural frequency of the panel, strong resonance was generated with vibration levels more than 200 times larger than when the spots were mismatched to the panel, she said. “This would be a worst-case scenario for the flight.” Now engineers have an improved means of predicting such a scenario and adapting to it.

Blasting paint to measure pressure

A lot of Casper’s work occurs at Sandia’s wind tunnels, but it doesn’t stop there. Last year, Casper migrated similar pressure diagnostics to Sandia’s blast tube to demonstrate in larger field tests the pressure-sensitive paint technique first used in the wind tunnels. She combined intricate lighting, high-speed cameras and the carefully formulated chemistry of pressure-sensitive paint to capture the effect of a shock wave rolling across a vehicle.

Like the turbulent spots in the wind tunnel, the shock wave creates unsteady pressure loading that can vibrate a flight vehicle.

With an explosive charge detonated at one end of the 6-foot diameter blast tube, a shock wave travels through the tube before hitting a model at the other end. Traditionally, hundreds of small pressure sensors would be placed on the model to measure the force. Instead, Casper proposed using pressure-sensitive paint.

“With sensors, you can only get pressure readings at the discrete locations of where they’re placed,” Casper said. “With the paint you can get data everywhere.”

In August, the paint was airbrushed on a model nose cone. Four high-powered, water-cooled ultraviolet lights were shone on the pressure-sensitive paint, causing it to fluoresce. The more oxygen the paint is exposed to, the less it fluoresces. The greater the pressure, the greater the oxygen. So as the shock wave from the blast passed over the model, increasing pressure on its surface, the intensity of the paint’s glow decreased.

Caught on a high-speed camera shooting at 25 kilohertz (or 25,000 cycles per second) with a filter used to block the ultraviolet lighting, the result is a dark shadow growing over the model from the tip to the base; and then as a reflected shock passes by, the shadow encroaches from base to tip.

The change in the paint’s florescence can be calibrated to the amount of pressure exerted on the model.

Casper and team conducted eight blast tube runs over two days and learned a few valuable lessons from the first-of-their kind tests. For example, the tests collect better data when it’s dark, or at least cloudy, as sunlight interferes with the paint’s florescence.

“It’s a new approach for measuring pressure taken to the blast tube,” she said. “Overall, the tests were successful, and with a few adjustments should ultimately be useful in determining how to protect objects from shock waves.”

 

You Might Also Like


Filed Under: Sensors (pressure), MOTION CONTROL, Motion control • motor controls

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more