Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

High-speed hexapod motion platform for smartphone camera optimization

By Paul Heney | November 6, 2017

Share

piGoogle engineers know that a shaky hand can ruin a selfie so they designed the shake out of the Pixel 2 camera using PI’s H-860 high speed hexapod system that accurately simulates motion with 6 degrees of freedom. The high accuracy and bandwidth of the shaker hexapod is a critical tool for optimizing motion and image stabilization algorithms, such as used in drones and cameras. The result is pinpoint accurate crisp images. Renowned industry-wide for nanometer precision motion systems, PI’s family of parallel-kinematic hexapod motion systems have many applications, including vibration simulation, precision positioning, lens alignment in camera manufacturing, photonic fiber alignment and image stabilization.

The 6-axis hexapod motion system is based on parallel kinematic structure with six frictionless actuators to provide six degrees of freedom. The user-defined pivot point (center of rotation) can be changed on the fly by one software command for increased versatility. Tracking of pre-defined trajectories, sinusoidal curves, and freely definable paths with high trajectory accuracy can easily be programmed with the included software tools.

The H-860 is designed to provide acceleration of 4g and velocity to 250 mm/sec– all while operating quietly. X, Y, Z travel range 15mm with incremental motion of 1µm, and up to 8° in pitch, yaw and roll (θX, θY, θZ) with 9 µrad incremental motion.

Extremely stiff and light-weighted carbon fiber components reduce the inertia and result in a high Eigenfrequency of 200Hz, important for fast response, high operating frequencies, and high throughput motion. The direct-drive hexapod comes with a powerful digital vector motion controller with open software architecture and hexapod-specific software.

Other hexapod applications may require higher load and motion ranges. PI’s family of hexapods can handle loads from 1kg to more than 2000kg for applications as diverse as fiber alignment and automotive automation.

PI
www.pi-usa.us


Filed Under: Motion Control Tips
Tagged With: PI
 

About The Author

Paul Heney

Paul J. Heney, the VP, Editorial Director for Design World magazine, has a BS in Engineering Science & Mechanics and minors in Technical Communications and Biomedical Engineering from Georgia Tech. He has written about fluid power, aerospace, robotics, medical, green engineering, and general manufacturing topics for nearly 25 years. He has won numerous regional and national awards for his writing from the American Society of Business Publication Editors.

Tell Us What You Think!

Related Articles Read More >

Schneider Electric launches Universal Automation Discovery Packs to foster industrial innovation
Encoders from SIKO support Industrial Ethernet
Draw-wire encoders from SIKO measure position, speed and inclination
Incremental encoders configurable via NFC (near-field communication)

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings