Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

How ball screws can help with cobot motion efficiency

By Mike Santora | October 9, 2019

Share

Collaboration robots (cobots) provide the strength, consistency, and reliability of industrial robots with the judgment and flexibility of human operators. Cobots are increasingly used in large-scale production applications that involve continuous lifting operations but still require a human touch. While cobots have been in use for at least a decade, applications have been limited by the gearing systems that control motion.

Recently, a French cobot maker developed a solution that uses ball screw and cable actuators instead of gears, increasing cobot efficiency and safety. “While researching applications for collaborative robots, I saw automation, in general, was making great strides, but many manual jobs — like sanding — had not evolved for thirty years or so. This got me interested in developing technology that would assist in, but not replace, functions that benefitted from human participation,” said Yvan M. Measson, CEO of cobots producer, ISYBOT.

thomson-assited-cobot-arm-image

Cobots are increasingly used in large-scale production applications providing the strength, consistency, and reliability of industrial robots with the flexibility of the human touch.

ISYBOT cobots target applications that are difficult to automate. Cobots augment human performance in many ways, such as eliminating fatigue, adding lifting strength, increasing accuracy, or improving product quality. Furthermore, using the cobot restores manual attractiveness, making the worker a “cobot pilot.”

For example, the final production steps for manufacturing a passenger train might require an operator to move a rotary sander around the hull’s surface until it feels finished to the touch. With cobot assistance, the operator still guides the sanding tool around the hull surface, but it is the cobot arm that does the heavy lifting. (Figure 1) The cobot can also learn the path the operator follows, repeating it as many times as the operator deems necessary.

M. Measson-operating-cobot-image

Figure 1: Yvan M. Measson, CEO of ISYBOT, demonstrates how a Cobot can help sand the hull of an aircraft cabin.

Other ways cobots improve productivity and ergonomics might include assisting in picking and placing parts on an assembly line, assisting with simple batch operations, or any heavy lifting. Cobots can work with humans and also function autonomously, improving productivity. (Figure 2). Having the cobot do the most tedious part of the job reduces strain on the operator’s musculoskeletal system while freeing them to focus on quality control. This elevates the role of the operator and helps reduce turnover.

Cobots are often used in industries where workers are regularly required to manually handle loads of up to 77 lbs or more. These include aeronautics, automotive, agriculture, naval, railway, defense, or manufacturing facilities. Cobots are also valuable where workers might be exposed to hazardous conditions, such as nuclear plants or environmentally compromised areas where the cobot can help with the most hazardous parts of the job.

autonomous-robot-operation

Figure 2: In addition to working with humans side by side, Cobots can also work autonomously, improving productivity and ergonomics.

As he studied the market, M. Measson discovered that several other companies were entering, but with solutions he felt were inefficient and potentially dangerous. The problem, he concluded, was in the gearing assemblies used to translate electrical energy into controllable motion.

“Gears have high friction ratios and add kinetic energy that, when released, can be dangerous. They also tend to be quite inefficient in the case of interactive use,” said M. Measson. “By replacing gears with more efficient ball screws, we drastically augment human strength and motion safely, consistently, and efficiently.”

M. Measson explains that ball screws deliver high strength with minimal friction. His cobots translate 94% of the motor torque into motion. With just electric current, they can control force for sanding operations or handle loads that would otherwise require complex gear assemblies and sensors. In addition to being more space and energy-efficient, the low-friction characteristic makes ball screws almost maintenance-free and much easier to control.

He says that ball screws have much lower inertia than gears, which, when combined with the controllability mentioned above, has tremendous safety implications. Unlike robots, which are usually caged off, cobots work hand-in-hand with humans; they must be able to stop instantly on any incidental contact with humans. Because gears have kinetic energy pent up in their complex assemblies, stopping abruptly on simple contact is difficult.

Having concluded that using ball screws would enable a highly efficient and competitive cobot, M. Measson and his team researched vendors and found that Thomson Industries could provide a solution for his applications.

“Load capacity is a key differentiator for cobots. Ball screws enable handling of higher loads than gears, and these ball screws had the highest load capacity of those we evaluated. We also liked the fact that they get there with two leads,” said M. Measson.

The Thomson team supplied three 12 x 10 rolled ball screws with a standard nut. (Figure 3). The higher capacity comes from a nut design based on two leads and four loaded turns, which enables a high load ratio in a very compact component. Moreover, engineers designed the ball screws to leverage the low friction capabilities of balls screws in at least two ways.

Thomson-ball-screw-KGF-D-nuts

Figure 3. Thomson rolled ball screw with a KGF-D standard nut.

First, where ball screw manufacturers might typically preload the nut and screw to minimize play, the play was reduced without preloading, thus reducing friction that preloading otherwise introduces. And to reduce friction further, where ball screw manufacturers might add wipers to protect barriers free of contamination, this new design resisted contamination without wipers. With no preloading or wipers, the new ball screws provided the smooth motion the cobot arms required.

Also, with inertial ratios of 10802.63 lbf/in2, 10458.42 lbf/in2, and 6724.79 lbf/in2 for each of the specified ball screws respectively, the new ball screws have among the lowest inertial ratios in the industry and provide a fraction of what a geared system would generate in handling a comparable load.

M. Measson is moving forward with many cobots on the production line, all of which are using the new technology to deliver the low-inertia, low-friction, and high-capacity motion. Most important to him is the fact that he is not only keeping the person in the process, but he is also making their work easier.

“When workers first saw the cobots, they were wondering how their jobs would evolve. But after using them for a short time, they became fans. That is very gratifying.”

Thomson • www.thomsonlinear.com


Filed Under: Ball screws • lead screws, Robotics • robotic grippers • end effectors
Tagged With: thomson linear
 

Related Articles Read More >

PBC-linear-ball-circuits-graphic
PBC Linear launches miniature metric ball screw assemblies
SCHNEEBERGER partners with a leading manufacturer of precision couplings
New tools and services aid ball screw selection and design
THK roller LM guide type HRX for myriad applications and harsh environments

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings