Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Hybrid Electrolyte Enhances Supercapacitance in Vertical Graphene Nanosheets

By American Institute of Physics | December 5, 2017

An excert from the paper, a scanning electron micrograph image showing vertical graphene nanosheets before and after nanopore formation.

Supercapacitors can store more energy than and are preferable to batteries because they are able to charge faster, mainly due to the vertical graphene nanosheets (VGNs) that are larger and positioned closer together. VGNs are 3-D networks of carbon nanomaterial that grow in rows of vertical sheets, providing a large surface area for greater charge storage capacity. Also called carbon nanowalls or graphene nanoflakes, VGNs offer promise in high-power energy storage systems, fuel cells, bio sensors and magnetic devices, amongst others.

Using VGNs as the material for supercapacitor electrodes offers advantages due to their intriguing properties such as an interconnected porous nanoarchitecture, excellent conductivity, high electrochemical stability, and its array of nanoelectrodes. Advantages of VGNs can be enhanced depending on how the material is grown, treated and prepared to work with electrolytes.

“Performance of a supercapacitor not only depends on the geometry of electrode material, but also depends on the type of electrolyte and its interaction with the electrode,” said Subrata Ghosh of the Indira Gandhi Centre for Atomic Research at Homi Bhabha National Institute. “To improve the energy density of a device, [electric] potential window enhancement will be one key factor.”

In a paper published this week in the Journal of Applied Physics, from AIP Publishing, Ghosh and a team of researchers discovered ways to improve the material’s supercapacitance properties.

According to modeling, VGNs should be able to provide high charge storage capabilities, and the scientific community is trying to unlock the keys to reaching the levels of efficiency that are theoretically available. Needed improvements to be viable include, for instance, greater capacitance per unit of material, greater retention, less internal resistance, and greater electrochemical voltage ranges (operating potential windows).

“Our motivation was to improve VGN performance,” Ghosh said. “We have taken two strategies. One is inventing a novel electrolyte, and another is improving the VGN structure by chemical activation. The combination of both enhances the charge storage performance remarkably.”

The researcher team treated VGNs with potassium hydroxide (KOH) to activate the electrodes and then allowed the treated electrodes to interact with a hybrid electrolyte, testing the formation of the electric double layer at the electrode/electrolyte interface. They also examined the morphology, surface wettability, columbic efficiency and areal capacitance of VGN.

The novel electrolyte they created is a hybrid that combines the advantages of aqueous and organic electrolytes for a novel hybrid organo-aqueous version that works to increase supercapacitor performance of VGNs. Using an organic salt, Tetraethylammonium tetrafluoroborate (TEABF4), in an acidic aqueous solution of sulfuric acid (H2SO4), they created an electrolyte that extended the device’s operating window.

Improvement of VGN architecture was associated with the process of KOH activation, which grafted the oxygen functional group onto the electrode, improved electrode wettability, reduced internal resistance and provided a fivefold improvement in capacitance of the VGNs. The activation approach in the paper can be applied to other supercapacitor devices that are based on nanoarchitecture, Ghosh said.

“Aqueous and organic electrolytes are extensively used, but they have their own advantages and disadvantages,” he said. “Hence the concept of hybrid electrolyte arises.”

You Might Also Like


Filed Under: Capacitors, Materials • advanced

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more