Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

IBM Reveals Novel Energy-Saving Optical Receiver With a New Record of Rapid Power-On/Off Time

By The Optical Society | February 22, 2018

SAN DIEGO—With the increasing popularization of datacenters and other bandwidth hungry interconnect applications, today’s bandwidth growth of short-distance optical networks demands data transmission speeds of more than 100 Gb/s, calling for the development of energy-efficient, multi-channel optical links with fast data transfer rates.

Based on complementary metal-oxide-semiconductor (COMS) technology—a standard low-cost, high-volume chip manufacturing technique used for most processors and chips today—a group of researchers from IBM Research in Zurich, Switzerland, together with a consortium working under the EU-funded project “ADDAPT,” have demonstrated a novel optical receiver (RX) that can achieve an aggregate bandwidth of 160 Gb/s through four optical fibers. This is not only the fastest data transmission speed to date, but the newly developed optical receiver also features the link power-on/off functionality and can wake-up and achieve phase-lock in eight nanoseconds, the shortest switch time in record. They will present their innovation at OFC 2018, 11-15 March, San Diego, California, USA.

According to the researchers, the rapid power-on/off feature will enhance link utilization and greatly reduce energy consumption on a chip or in an optical interconnect system. Unlike many commercial optical transceivers that are always powered on regardless of transmission activity, the power here would only be used when data packets are transmitted through the optical link. The novel design, packaged with an 850-nanometer photodiode array, targets low-cost VCSEL-based optical links for datacenter interconnects.

“This is the first optical an receiver that combines high-speed data transmission rate and rapid power-on and off functionality while being extremely low lower in the ‘power-on’ state (about 88 miliwatts),” said Alessandro Cevrero, the primary author of the paper and a scientist of IBM Research Lab, Switzerland. Today, link utilization in datacenters is less than ten percent for 99 percent of the links. This means only ten percent of the links’ work time is actually used for transmitting user data, while the rest of the time is wasted by sending idle data packets that missing information. To improve power efficiency in optical interconnect system, the researchers developed the rapid on/off functionality for the receiver, so that links can be powered off during idle time and powered back on when the data is ready to be transmitted.

“Our design, for the first time, allows for the on/off switching of and optical link on a per-packet basis,” Cevrero said. The switch-on time is only eight nanoseconds, which is shorter than the average length of time for an individual data packet in a typical network protocol transmitted at a speed of 160 Gb/s. “There were previous scientific attempts to turn off the links when there is no data, however the timescale to switch on and off the link was orders of magnitude longer than that of an individual data packet. To achieve shorter power-on, time at a very high data transmission speed is the key challenge.”

To address this, Cevrero’s team designed an optical receiver with four identical channels associated with a proposed link protocol. The link protocol is equipped with self-developed smart analog circuits that can rapidly align the receiver’s clock with the arrival of the incoming data, and detects the optical signal sequences to rapidly turn the link system on and off.

The researchers then tested the receiver at 40 Gb/s second with a reference transmitter consisting of an 850-nanometer Mach-Zehnder modulator followed by a variable optical attenuator. They also performed power on/off experiments by generating an optical signal implementing the proposed link protocol. As a result, they observed correct power cycling across a 109 power cycle, and that the receiver operates error free at 40 Gb/s second yielding 160 Gb/s aggregated bandwidth over multi-mode fibers. The experimental data also showed that ten-percent link utilization corresponds to 85-percent power saving on the receiver.

Cevrero noted that improving power efficiency of optical links enables scientists to build significantly faster, higher performance computer systems, since one can “cram” higher bandwidth in the same thermal budget of the package. Saving on energy consumption also helps reduce the carbon dioxide emission from the optical network, leading to greener optical communication systems.

The researchers’ next step, Cevrero said, is to validate a complete optical interconnect system by measuring the optical transmitter, as well as to increase the data transmission speed on the receiver side to 56 Gb/s per channel.

You Might Also Like


Filed Under: Materials • advanced

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more