Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Improving The Management Of ‘Systems Of Systems’

By Phys.org | November 14, 2016

The three-year DYMASOS project has tackled the management of systems of systems – how independent technologies can be harnessed to work together to optimise overall outcomes. With the development of the ‘Internet of Things’, the ability to do this is becoming even more important.

Our future is likely to rely on many ‘systems of systems’ – networks of technical operations, that work independently, but need to act together. Creating conditions for all sorts of systems to work together could be the next step in optimising technological efficiency. Ending in September 2016, the EU-funded DYMASOS (Dynamic Management of Physically Coupled Systems of Systems) project has developed new management methods and engineering tools for these ‘cyber-physical’ systems of systems. Improved management leads to better performance and could significantly reduce our consumption of resources and carbon footprints.

‘The project has made an important contribution in taking first concrete steps into realising and concretising a novel field of research – the Internet of Things,’ says Dr. Iiro Harjunkoski, from ABB Corporate Research in Germany and a member of the DYMASOS consortium. This will enable everyday objects to be networked via the internet, allowing them to send and receive data and giving any system the capacity to be ‘smart’ and coordinate with other systems.

Real industrial case studies

DYMASOS was based on real industrial case studies. These were underpinned by a thorough analysis of markets, industrial needs, and challenges of the industrial project partners.’The research was steered by the application cases but nonetheless also geared towards obtaining fundamental results and new insights.’ explains project co-ordinator, Professor Sebastian Engell of Technische Universität Dortmund.

The focus of the case studies were in the fields of chemical production, from companies, BASF and INEOS, both among the largest chemicals producers in the world, and in the operation and engineering of electric power distribution and electric vehicle charging infrastructures, using data from HEP ODS, Croatia, and AYESA, Spain. ‘The realistic modelling and simulation of DYMASOS is one of the critical issues addressed by the project,’ says Dr Patrick Panciatici, Scientific Advisor at RTE, France.

DYMASOS developed four different approaches to modelling systems of systems. In a comparison to the behaviour of biological systems, ETH Zurich looked at understanding and controlling population behaviour. They looked, for example at modelling the overnight recharging behaviour of electric car owners, knowing only information about average population behaviour. An electric vehicle case study from the city of Malaga carried out by the University of Seville, modelled coalitional control – how to jointly optimise the behaviour of different elements in a process.

TU Dortmund also modelled market-like mechanisms that try to optimise results by dynamic price-setting or constraining resources to balance supply and demand; this was applied to a petrochemical site of INEOS in Cologne and a reactor system at BASF. The University of Zagreb developed a hierarchical control model; where the grid configuration can change dynamically to minimise power losses, based on an electric distribution grid case study provided by HEP ODS.

Wider implementation

Large-scale simulations of these complex systems successfully validated the management and control algorithms produced. The DYMASOS Engineering Platform provides guidelines for the design of evolving systems of systems that can balance local autonomy and global management.

DYNAMOS member, Mark Lewis, a Low Carbon Consultant at Tees Valley Unlimited, in the UK says,’the project has developed a number of practical demonstrations which will interest other complexes within and across companies and organisations to start to take further interest.’

Industrial project members are now implementing the solutions developed by DYMASOS and this will give European operators of large technical systems and providers of management and automation solutions strategic competitive advantages, including cost savings, energy efficiency, higher stability and improved resilience to faults and changes in demand.

You Might Also Like


Filed Under: Industrial automation

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.