Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Iowa State Materials Scientist Developing Materials and Electronics that Dissolve When Triggered

By Iowa State University | May 2, 2014

Iowa State's Reza Montazami examines a degradable antenna capable of data transmission. Photo Credit: Bob ElbertIowa – A medical device, once its job is done, could harmlessly melt away inside a person’s body. Or, a military device could collect and send its data and then dissolve away, leaving no trace of an intelligence mission. Or, an environmental sensor could collect climate information, then wash away in the rain.

It’s a new way of looking at electronics: “You don’t expect your cell phone to dissolve someday, right?” says Reza Montazami, an Iowa State University assistant professor of mechanical engineering. “The resistors, capacitors and electronics, you don’t expect everything to dissolve in such a manner that there’s no trace of it.”

But Montazami thinks it can happen and is developing the necessary materials.

He calls the technology “transient materials” or “transient electronics.” The materials are special polymers designed to quickly and completely melt away when a trigger is activated. It’s a fairly new field of study and Montazami says he’s making progress.

The research team he’s leading, for example, is developing degradable polymer composite materials that are suitable platforms for electronic components. The team has also built and tested a degradable antenna capable of data transmission.

The team presented some of its research results at the recent meeting of the American Chemical Society in Dallas.

And, a paper describing some of the team’s work, “Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics,” has just been published online by the journal Advanced Functional Materials.

The paper focuses on the precise control of the degradation rate of polymer composite materials developed for transient electronics.

Montazami is the lead senior author of the paper. Iowa State co-authors are Nastaran Hashemi, an assistant professor of mechanical engineering; Handan Acar and Simge Cinar, postdoctoral research associates in mechanical engineering; and Mahendra Thunga, a postdoctoral research associate in materials science and engineering and an associate of the U.S. Department of Energy’s Ames Laboratory. Michael Kessler, formerly of Iowa State and now professor and director of Washington State University’s School of Mechanical and Materials Engineering in Pullman, is also a co-author.

The research has been supported by Montazami’s startup funds from Iowa State. He’s pursuing grants to support additional projects.

“Investigation of electronic devices based on transient materials (transient electronics) is a new and rarely addressed technology with paramount potentials in both medical and military applications,” the researchers wrote in the paper.

To demonstrate that potential, Montazami played a video showing a blue light-emitting diode mounted on a clear polymer composite base with the electrical leads embedded inside. Add a drop of water and the base and wiring begin to melt away. Before long the light goes out and a second drop of water degrades what little is left.

The researchers have developed and tested transient resistors and capacitors. They’re working on transient LED and transistor technology, says Montazami, who started the research as a way to connect his background in solid-state physics and materials science with applied work in mechanical engineering.

As the technology develops, Montazami sees more and more potential for the commercial application of transient materials.

Just think, he says, if you lose your credit card, you could send out a signal that causes the card to self-destruct. Or, sensors programmed to degrade over certain times and temperatures could be stored with food. When the sensors degrade and stop sending a signal, that food is no longer fresh. Or, when soldiers are wounded, their electronic devices could be remotely triggered to melt away, securing sensitive military information.

 

You Might Also Like


Filed Under: M2M (machine to machine)

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.