Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

IUPUI Study: Training Computers to Differentiate Between People with the Same Name

By Indiana University-Purdue University Indianapolis School of Science | January 12, 2017

Share

All individuals are unique, but millions of people share names. How can computers distinguish — or as it is technically known, disambiguate — people with common names and determine which John Smith or Maria Garcia or Wei Zhang or Omar Ali is a specific John Smith, Maria Garcia, Wei Zhang, or Omar Ali — or even someone previously unidentified?

This conundrum occurs in a wide range of environments from the bibliographic — which Anna Hernandez authored a specific study? — to the law enforcement — which Robert Jones is attempting to board an airplane flight?

Two computer scientists from the School of Science at Indiana University-Purdue University Indianapolis and a Purdue University doctoral student have developed a novel machine-learning method to provide better solutions to this perplexing problem. They report that the new method is an improvement on currently existing approaches of name disambiguation because the IUPUI method works on streaming data that enables the identification of previously unencountered John Smiths, Maria Garcias, Wei Zhangs, and Omar Alis.

Existing methods can disambiguate an individual only if the person’s records are present in machine-learning training data, whereas the new method can perform non-exhaustive classification so that it can detect the fact that a new record which appears in streaming data actually belongs to a fourth John Smith, even if the training data has records of only three different John Smiths. “Non-exhaustiveness” is a very important aspect for name disambiguation because training data can never be exhaustive, because it is impossible to include records of all living John Smiths.

“Bayesian Non-Exhaustive Classification — A Case Study: Online Name Disambiguation using Temporal Record Streams” by Baichuan Zhang, Murat Dundar and Mohammad al Hasan is published in Proceedings of the 25th International Conference on Information and Knowledge Management. Zhang is a Purdue graduate student. Dundar and Hasan are IUPUI associate professors of computer science and internationally respected experts in machine learning.

“We looked at a problem applicable to scientific bibliographies using features like keywords, and co-authors, but our disambiguation work has many other real-life applications — in the security field, for example,” says Hasan, who led the study. “We can teach the computer to recognize names and disambiguate information accumulated from a variety of sources — Facebook, Twitter and blog posts, public records and other documents — by collecting features such as Facebook friends and keywords from people’s posts using the identical algorithm. Our proposed method is scalable and will be able to group records belonging to a unique person even if thousands of people have the same name, an extremely complicated task.

“Our innovative machine-learning model can perform name disambiguation in an online setting instantaneously and, importantly, in a non-exhaustive fashion,” Hasan said. ” Our method grows and changes when new persons appear, enabling us to recognize the ever-growing number of individuals whose records were not previously encountered. Also, some names are more common than others, so the number of individuals sharing that name grows faster than other names. While working in non-exhaustive setting, our model automatically detects such names and adjusts the model parameters accordingly.”

Machine learning employs algorithms — sets of steps — to train computers to classify records belonging to different classes. Algorithms are developed to review data, to learn patterns or features from the data, and to enable the computer to learn a model that encodes the relationship between patterns and classes so that future records can be correctly classified. In the new study, for a given name value, computers were “trained” by using records of different individuals with that name to build a model that distinguishes between individuals with that name, even individuals about whom information had not been included in the training data previously provided to the computer.

“Features” are bits of information with some degree of predictive power to define a specific individual. The researchers focused on three types of features:

  1. Relational or association features to reveal persons with whom an individual is associated: for example, relatives, friends, and colleagues
  2. Text features, such as keywords in documents: for example, repeated use of sports- culinary-, or terrorism-associated keywords
  3. Venue features: for example, institutions, memberships or events with which an individual is currently or was formerly associated

The study was funded by the National Science Foundation through CAREER awards to Hasan and Dundar in 2012 and 2013, respectively.

The researchers hope to continue this line of inquiry, scaling up with the support of enhanced technologies, including distributed computing platforms.


Filed Under: Rapid prototyping

 

Related Articles Read More >

PCB mills
Basics of printed circuit board milling machines
Rapid Product Solutions, Inc. enhances its rapid prototyping and production services
Protolabs Launches Production Capabilities for Metal 3D Printing
3D Printer Makes Peacekeeping Missions Cheaper and Repair of Defense Systems Faster

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

April 11, 2022
Going small with 3D printing
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings