Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Jupiter’s Spooky Sounds: Emissions From Jupiter’s Auroras Captured

By University of Iowa | October 11, 2016

When a NASA spacecraft made its first full orbit around Jupiter, a University of Iowa instrument on board recorded haunting sounds befitting the Halloween season.

The UI instrument was listening to Jupiter’s auroras, light shows similar to the northern and southern lights on Earth but on a vastly larger scale. The radio emissions cast by Jupiter’s auroras were recorded by the UI instrument, called Waves, as the Juno spacecraft traveled about 2,600 miles above Jupiter’s swirling clouds. Those emission recordings were then converted into sound files by UI engineers.

The emissions from Jupiter were discovered in the 1950s but had never been analyzed from such a close vantage point, according to NASA.

“Jupiter is talking to us in a way only gas-giant worlds can,” says Bill Kurth, research scientist at the UI and co-investigator for Waves. “Waves detected the signature emissions of the energetic particles that generate the massive auroras that encircle Jupiter’s north pole. These emissions are the strongest in the solar system. Now we are going to try to figure out where the electrons that are generating them come from.”

UI Waves team members — Kurth, professor Don Gurnett, associate research scientist George Hospodarsky, and post-doctoral researcher Masafumi Imai — were attending a Juno scientific meeting in late August when data rolled in from Juno’s first close flyby of Jupiter, known as Perijove 1. It was a big moment, the first up-close sampling of the auroras generated by the largest planet in our solar system.

“Most of the space missions I’ve been involved in, you go someplace for the first time…everyone has a preconceived notion of what you might detect,” Kurth says, “but the details are waiting to be discovered. The details are kind of like a puzzle, and when you begin to put these pieces together, the physics behind it, you understand better.”

The scientists want to learn how electrons and ions are accelerated along magnetic field lines above Jupiter to eventually collide with the atmosphere, creating the bursts of light that become the auroras. To do that, the Waves instrument will sample plasma waves along different segments in the magnetic field lines with each of its orbits around Jupiter.

Kurth likens plasma to a stringed instrument. “If you pluck a string on a violin, the string vibrates,” he says. “The vibrating string is like the plasma itself; in the plasma it is the charged particles that are moving.”

Yet those radio waves can’t be heard. Instead, they need to be “downshifted” to the audio range, Kurth says, and then compressed to turn multiple hours of measurements into an abbreviated soundtrack that captures the greatest hits, so to speak. This translation is performed by UI senior engineering associate Don Kirchner.

“We like to listen to them. We figure if we like to listen to them, others will too,” Kurth says.

A camera aboard the spacecraft captured high-resolution views of the Jovian atmosphere and the first glimpse of Jupiter’s north and south poles.

The Aug. 27 flyby was the closest the Juno spacecraft will get to Jupiter. Thirty-five more close flybys are planned during Juno’s mission, which is scheduled to end in February 2018.

The UI scientists can’t wait to learn what’s next from Waves’ next measurement, which will happen on Nov. 2.

“It just kind of whets our appetite for what to expect,” Kurth says.

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.