Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Keeping Cool with a Black Semiconductor

By U.S. Department of Energy | June 13, 2016

As anyone who has held a laptop computer or cell phone knows, they produce heat that has the potential to damage the microchips inside. However, layered, crystalline black phosphorus could lead to a new microchip design that lets heat flow away and keeps electrons moving. For the first time, scientists observed that black phosphorus nanoribbons conduct heat two times more in the zig-zag direction compared to another direction.

Designers can now take advantage of the orientation-dependent thermal properties of phosphorus to keep microelectronic devices cool and improve their efficiency. The orientation-dependent behavior could boost energy efficiency in transistors and thermoelectric devices as well as lead to microchips that utilize different orientations of phosphorus for both cooling and microelectronics operation.

Black phosphorus is a natural layered semiconductor and is a promising candidate for electronic, optical, and optoelectronic applications. Theorists predicted that different crystallographic orientations of black phosphorus could have high heat flow and low electrical conductance; while other crystallographic orientations could have low heat flow and high electrical conductance. However, measuring the orientation dependence of these properties was extremely difficult.

Now, researchers, led by scientists at the University of California-Berkeley, have measured the anisotropic thermal properties in black phosphorus nanoribbons. In their research, the scientists micro-fabricated nanoribbons of black phosphorus  into suspended devices to measure tiny thermal gradients and thermal conductivity. They found that the thermal conductivity was two times higher in the zig-zag crystal direction than the “arm chair” direction. They also observed that the thermal properties depend on the size of the nanoribbons. It has been proposed that the anisotropic thermal properties are attributed to differences in phonon dispersion and phonon-phonon scattering rates. Scientists could use such orientation-dependent behavior to control heat generation and dissipation in transistors and thermoelectric devices. Even more exciting, microchips could be designed with cooling optimized using phosphorous crystals in one crystallographic orientation, while operation of the device is controlled by taking advantage of the electrical conductance of phosphorous crystals oriented in a different direction.

You Might Also Like


Filed Under: M2M (machine to machine)

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more