Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Kestrel Inspires Unpowered, Autonomous Glider To Climb Higher

By Institute of Physics | December 18, 2015

Share

Andreas Trepte, www.photo-natur.de

Researchers at the RMIT University, Melbourne, Australia have drawn inspiration from the way kestrels hover above their prey to develop an autonomous fixed-wing micro air vehicle (MAV) that can gain height from convenient updrafts.

The results are published today, Friday 18th December, in the journal Bioinspiration & Biomimetics.

“It’s long been known the birds take advantage of upward air currents to save energy when flying” explains Alex Fisher, a lead author of the paper. “This ‘boost’ of upward-moving air can be found when the wind hits a large obstacle, like a cliff or mountain range, and to a smaller extent close to man-made obstacles like buildings.”

“We envisage that in the future, MAVs will be used for many tasks in urban environments, such as delivering packages, performing surveillance, and search and rescue” he continues. “Using these updrafts would make them more efficient and therefore extend their working range.”

“If you’re familiar with the kestrel, you may know they’ve got a unique way of hunting – hovering over a location without flapping their wings. This allows them to keep their heads still with incredible precision, helping them spot prey on the ground. The preciseness at which they hold position led us to thinking we could try this ‘wind-hovering’ technique on our MAV.”

The researchers used a commercially available polystyrene foam sail-plane as their test platform.

“We were lucky in a sense that these were lightweight, as it allowed us to test the MAV easily in the field” continues Fisher. “This MAV we chose had a number of advantages, including the ability to fly well in light winds, and large control surfaces making it more nimble in the air.”

After developing a control algorithm and installing it on a 36 mm x 26 mm control board which was interfaced with a GPS and magnetometer, the MAV was flown at two test locations, near a hill and close to a building.

At the hill-side, the MAV was able to gain approximately 360 ft (120 m) in height, and could fly autonomously until the control batteries lost power.

Tests close to the building proved more difficult, with the MAV only capable of sustaining flight for around 20 seconds.

“The MAV has a relatively narrow range of wind speeds at which it can soar without power” concludes Fisher. “Birds are able to overcome this problem to some extent by changing the shape of their wings or moving their feathers.”

“Our human pilot was able to outperform our control algorithm under gusty conditions – but not by much! Long-lasting gusts and lulls were a particular problem, but we learnt a lot from these tests.”

Fisher and his colleagues are now working on ways to mimic the changing arrangement of the wing and feathers on hovering birds, to improve the soaring performance of their MAV.

Source: http://www.eurekalert.org/pub_releases/2015-12/iop-kiu121715.php


Filed Under: Aerospace + defense

 

Related Articles Read More >

Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design
Air Force Jet
How drones are advancing metrology for fighter jets

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings