Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Laser Communication System Integrated, Ready for Launch

By NASA | March 15, 2013

A new NASA-developed, laser-based space communication system will enable higher rates of satellite communications similar in capability to high-speed fiber optic networks on Earth. See the photo here.

The space terminal for the Lunar Laser Communication Demonstration (LLCD), NASA’s first high-data-rate laser communication system, was recently integrated onto the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft at NASA’s Ames Research Center, Moffett Field, Calif. LLCD will demonstrate laser communications from lunar orbit to Earth at six times the rate of the best modern-day advanced radio communication systems.

“The successful testing and integration of LLCD to LADEE is a major accomplishment,” said Donald Cornwell, LLCD mission manager at NASA’s Goddard Space Flight Center in Greenbelt, Md. “It demonstrates that this new technology is robust and ready for space. This is the first time NASA has had such a communication system pass all its tests and be certified flight ready.”

The LLCD mission will use a highly reliable infrared laser, similar to those used to bring high-speed data over fiber optic cables into our workplaces and homes. Data, sent in the form of hundreds of millions of short pulses of light every second, will be sent by the LADEE spacecraft to any one of three ground telescopes in New Mexico, California and Spain.

The real challenge of LLCD will be to point its very narrow laser beam accurately to ground stations across a distance of approximately 238,900 miles while moving. Failure to do so would cause a dropped signal or loss of communication.

“This pointing challenge is the equivalent of a golfer hitting a ‘hole-in-one’ from a distance of almost five miles,” said Cornwell. “Developers at the Massachusetts Institute of Technology’s (MIT) Lincoln Laboratory have designed a sophisticated system to cancel out the slightest spacecraft vibrations. This is in addition to dealing with other challenges of pointing and tracking the system from such a distance. We are excited about these advancements.”

The LLCD mission will also serve as a pathfinder for the 2017 launch of NASA’s Laser Communication Relay Demonstration (LCRD). That mission will demonstrate the long-term viability of laser communication from a geostationary relay satellite to Earth. In a geostationary orbit the spacecraft orbits at the same speed as Earth, which allows it to maintain the same position in the sky.

Engineers believe that future space missions will be able to use laser communication technology with its low mass and power requirements, to provide increased data quantity for real-time communication and 3-D high-definition video. For example, using S-band communications aboard the LADEE spacecraft would take 639 hours to download an average-length HD movie. Using LLCD technology that time would be reduced to less than eight minutes.

Prior to shipment from MIT, the LLCD spaceflight hardware was subjected to a rigorous set of flight test simulations such as the strong vibrations expected from a Minotaur V rocket, the launch vehicle for the LADEE mission. The LLCD hardware also had to withstand simulated extreme temperatures and other conditions it will experience within the harsh environment of space. Throughout this stringent battery of tests, LLCD maintained its critical alignment and stable pointing accuracy.

Flight and ground station hardware for LLCD was designed and built at Lincoln Laboratory in Lexington, Mass. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and the European Space Agency are developing the ground stations in California and Spain, respectively.

“This is an exciting time for space communications,” said Cornwell. “We are about to make a leap in communications ability that is unmatched in NASA’s history.”

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more