Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Laser Hardening, An Increasingly Flexible Technology For Hardening Steel

By University of the Basque Country | December 12, 2016

Share

Hardening is a surface heat treatment applied to steel parts and which increases their hardness considerably. The UPV/EHU’s High Performance Manufacturing group has conducted the study and tuning of an innovative technology to carry out this process. It involves using laser, but unlike the traditional system, it uses scanning optics, which gives the thickness of the part to be treated great capacity for adaptation.

The hardness of steel can be achieved through hardening, which is crucial for steel parts requiring high wear resistance, such as sheet steel stamping dies. A heating process up to about 800-1,000 ºC is carried out followed by rapid cooling. This leads to a change in the structure of the steel.

If the hardening is carried out using laser, since it is a highly localised heat source, it enables only the surface to be hardened, leaving the core of the parts in their original state; “so the parts are not so brittle and as little heat is inserted, the part does not become as distorted. In the end, what the heat does is deform the part, and that means it has to be finished using other methods,” explained Aitzol Lamikiz, professor of the UPV/EHU’s department of Mechanical Engineering and member of the High Performance Manufacturing group that carried out the research. In industry, the laser hardening process has been used since 2000. However, according to Lamikiz, it has a limitation: “The laser sweeps a constant bandwidth so the hardened zone thus ends up with a constant thickness.”

In order to make the technology more flexible, this research group at the UPV/EHU decided to assess the viability of incorporating moving, scanning optics into this process. What the optics (a galvanometric scanner) they used does is move a very small laser at great speed, sweeping the surface line by line. That way, the hardening width can be adapted simply by changing the program parameters. Drawing an analogy between the hardening treatment and the process of painting a wall, Lamikiz explained that conventional laser hardening “would be like painting the wall with a roller, so the width that is painted corresponds to that of the roller. However, with the new technique, we substitute the roller for a marker with the finest point.”

In the experiments carried out, the first thing they discovered was that “it was possible to use this technique to carry out the hardening. Then we gradually saw how the result of the treatment changed according to the speed of the laser movement, the power used, etc. According to our tests, when the laser moves very fast, the results are similar to those of the conventional process,” he said.

Promising results

Exploring the possibility of using this methodology further, the UPV/EHU’s department of Mechanical Engineering ran a project known as Hardlas in collaboration with companies in the Basque Country and Piedmont (Italy) to see how far the process was viable. “We can say that the project was a success as we saw that it was viable, and that it could be transferred to industry,” said the researcher.

Although they have tested the viability of the process, there are still steps to be taken to get as far as industrial production. One of the main difficulties they came up against was controlling the process: “It is very important to get the material treated to the necessary temperature so that the treatment takes place, but it must not be exceeded otherwise we would melt the material. In our process, as the laser is constantly moving, control is more complex,” explained Lamikiz. On the other hand, the tests were carried out “at the university using lab equipment. And to use the process on an industrial scale, it would be important to try it out with more powerful lasers, different types of lasers, on other materials, etc.,” he added.


Filed Under: Industrial automation

 

Related Articles Read More >

Festo and the power of worker upskilling at the Oracle Industry Lab
Five ways to drive ROI from personnel and cobot investments
Safety Air Guns use engineered air nozzles for high performance
EXAIR’s new no drip siphon fed spray nozzle coats, cools and cleans

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings