Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Light Energy and Biomass Can Be Converted to Diesel Fuel and Hydrogen

By Chinese Academy of Sciences | June 10, 2019

Share

A research group led by Professor Wang Feng at the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences recently developed a method to produce diesel fuel and hydrogen by exploiting light energy (solar energy or artificial light energy) and biomass-derived feedstocks. Their findings were published in Nature Energy.

Biomass, including agricultural straw and forest waste, is the largest source of sustainable carbon resources in nature and is able to replace petrochemical resources to provide abundant derivative products. As an alternative to photocatalytic water splitting to provide hydrogen, splitting of biomass or its derivatives usually yields higher light transformation efficiencies and higher rates of hydrogen production.

Nevertheless, oxidative products derived from biomass are mostly useless, causing waste of sustainable biomass resources and environmental pollution. Therefore, developing technologies that merge hydrogen production and biomass conversion into value-added chemicals or fuels is expected to bring about a “double guarantee” of materials and energy for industrial manufacture and daily life.

Prof. Wang Feng and his group at the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences developed a process for using light energy to drive the valorization of downstream biomass products, namely methyl furan compounds, to produce hydrogen and diesel fuel precursors simultaneously.

The reactions were carried out at room temperature and pressure, and produced hydrogen and diesel fuel precursors that are constituted by isomeric oxygenates with variety of carbon numbers typical of diesel fuel. Removal of the oxygen contents from the diesel fuel precursors produced sustainable diesel fuels with components close to current petroleum diesel; hydrogen could be used to remove the oxygen from the diesel fuel precursors or be used alone.

This process realizes the directional transformation of light energy and biomass to hydrogen energy and diesel fuels, and provides a way to produce clean energy using solar energy and sustainable carbon sources present on the earth’s surface.


Filed Under: Product design

 

Related Articles Read More >

Read COMSOL News 2021
PCB mills
Basics of printed circuit board milling machines
scilab
The top ten free engineering math software packages
hardcore programming for mechanical engineers
Book Review: Hardcore Programming for Mechanical Engineers, By Angel Sola Orbaiceta

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings