Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Machine-Learning to Inspire Singapore Metro Buildout

By Brooks Hays, United Press International | January 26, 2017

Share

Researchers are trying to distill smart transit philosophy into a machine-learning algorithm. Scientists hope their smart transit model will reveal a recipe for a smarter city, organized in way that relieves the congestion common on the mass transit systems of major cities.

“Singapore needs an efficient transport system to support people’s activities given the existing and planned infrastructure,” project leader Christopher Monterola, a researcher at the Agency for Science, Technology and Research’s Institute of High Performance Computing, explained in a news release. “To guide planners, we needed a model that could predict ridership under the regional centers plan.”

Like many cities, Singapore consists of a large central downtown, or an inner central business district, surrounded by less dense residential and industrial zones. With so many commuting in and out of the central business district at rush hour, the setup promotes congestion.

Planning officials are working to promote less centralized urban density — regional centers spread throughout the city state.

To predict how these efforts and other land use trends will affect metro ridership and transportation patterns, researchers have turned to machine-learning.

Scientists supplied their algorithm with both ridership and land-use distribution data. Researchers plotted the paths of more than 20 million bus and subway journeys over the course of week. They combined ridership patterns with information on the concentration of lands used for business, industry, residence and outdoor recreation.

The researchers experimented with three machine-learning models to see which best predicted the relationship between land-use and ridership.

“We found that a decision tree model performed best, with good accuracy, computational efficiency and an easy-to-follow user display,” Monterola explained. “Results indicated that an increase in amenities of up to 55 per cent across the city would increase ridership. Beyond this point, ridership begins to decline; this is logical because if amenities are available locally, people walk instead.”

Dense concentrations of amenities were the best predictors of mass transit use. Researchers hope their findings — detailed in the journal Land Use Policy — will help city officials expand and augment the mass transit system to better meet and anticipate the needs of Singapore’s riders.


Filed Under: Infrastructure

 

Related Articles Read More >

Do Sensors Make Infrastructure Safer?
Crawling Robots and Flying Drones May Help Missouri’s Bridges
Viasat and Facebook Collaborate to Expand Internet Connectivity in Rural Mexico
Smartphone-Based System to Monitor America’s Crumbling Infrastructure

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings