Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Materials hold the key to higher growth in 3D printing

By Leslie Langnau | June 12, 2012

Share

Various 3D printer and additive manufacturing systems are already manufacturing parts, just not in the quantity that is possible. What’s holding back this technology’s potential to “disrupt manufacturing?” Design engineers will tell you it’s the lack of information and standards, particularly for materials. Despite all the news reports and commentary, engineers and operators in manufacturing have limited knowledge, let alone experience, of additive manufacturing processes or systems.

The print material used with 3D printer or additive manufacturing systems has been, and continues to be, a key to growth for this industry. Unless a couple of important challenges are resolved, however, 3D printing will not develop enough to disrupt manufacturing. It will be a niche application.

For design engineers, the right material is key to every design. But, nearly every 3D printing material is specific to a 3D printing process–extrusion, jetting, binder jetting, vat photopolymerization, powder bed fusion, or directed energy deposition system. You cannot really cross materials among different vendor systems and get reliable, predictable, and reproducible results. There are good technical reasons for some of this, (such as print-head requirements), but this limitation affects the use of this technology in manufacturing.

Also, design engineers need a lot more information about material performance before they will specify it for wider manufacturing application. The information they needed must be comprehensive. It should cover mechanical, chemical, thermal, electrical, environmental, and anisotropy features of each material. Also, designers need to know what are the variations possible based on the manufacturing process? How big are the variations? What’s the test data? What are the statistics that show this information; how many parts were built and tested for various performance features?

How do secondary processes of finishing (painting, bonding, and so on) affect the material? Some performance driven industries (aerospace, medical) will require traceability reports.

Then, there should be manufacturing guidelines for each of the 3D printing, additive manufacturing processes.

Information on material properties must be sent out to the design community so that they know what they are working with. Jeff DeGrange, vice president, DDM, Stratasys, spent part of his career in the manufacturing area for Boeing. He has been a long time advocate of 3D printing for manufacturing. He noted that, “Design guidelines need to be brought forward. Most developers of 3D printing materials display limited information. It is woefully inadequate for design engineers. This is one of the reasons that this industry is about a $1.7 billion industry, which is tiny in comparison to other industries.” (For comparison, the market for manufacturing tools is about a $4 billion market today. The market for end use parts market is $280 billion.)

Continued DeGrane, “This lack of material information is one reason why 3D printing has been limited to prototyping. You don’t have to worry about repeatable material properties or maintaining repeatability from build to build because you’re only doing one-offs and you don’t care. But the design community needs to have confidence in the properties of these materials. How will the materials react to long-term service of say 10 to 20 years, as is the need in the business jet and high-end car businesses? How will parts made of these materials handle vibration, temperature extremes, impact, and so on? This is the type of information needed by the design community.”

And these studies and analyses should be done by credible third parties. The process has begun, but more effort is needed. Such information will give design engineers the confidence they need to specify this material in more applications, thereby growing the 3D printing, additive manufacturing industry.

Leslie Langnau
[email protected]

Make Parts Fast


Filed Under: 3D printing • additive manufacturing • stereolithography, Make Parts Fast

 

Related Articles Read More >

Korea Maritime and Ocean University scholars find key to reducing defects in multimaterials
SPEE3D’s metal 3D technology to print military maritime parts to help reduce supply chain issues
Wanna’ make a Hulkbuster? Check out this video
Meteor and Dyndrite announce Meteoryte software for industrial inkjet 3D Printers

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings