Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

NanoSteel Expands Material Capabilities for Additive Manufacturing

By atesmeh | March 13, 2015

Share

The NanoSteel Company, a leader in nano-structured steel materials design, has announced the expansion of the company’s additive manufacturing (AM) material capabilities to support metal 3D printing of complex high hardness parts and the ability to customize properties layer-by-layer through gradient material design.

The company leveraged its 2014 breakthrough in AM wear materials to print a bearing and impeller using the powder bed fusion process. These parts were measured to be fully dense and crack-free, with hardness levels >1000 HV. By delivering these properties in functional parts, NanoSteel takes a significant step in the development of metal powders that enable affordable, robust industrial components produced on-demand through the 3D-printing process.   

Building on this milestone, the company used a combination of high hardness and ductile alloys to create a part featuring a gradient design. NanoSteel worked with Connecticut Center for Advanced Technology to generate part samples using freeform direct laser deposition. This single additive manufacturing process achieved a seamless transition between the hard and ductile properties without subsequent heat treatment.

These gradient materials designs offer the equivalent of “digital case hardening” —delivering impact resistance and overall robustness in addition to high hardness and wear resistance in a single part.  By providing this capability, NanoSteel offers OEMs considerable design flexibility in meeting part-performance requirements while taking advantage of the operational efficiencies of AM including on-demand availability, less inventory and lower transportation costs.  

 “Proprietary metal alloys that support the cost-effective 3D printing of high-quality parts will help accelerate the transition from subtractive to additive manufacturing across applications such as wear parts, bearings, and cutting tools” said Harald Lemke, NanoSteel’s General Manager of Engineered Powders. “The company’s AM powder offerings make it possible to design exclusively for the function of a high hardness part, releasing designers from the limitations of conventional production processes and opening new opportunities to improve performance.” 

The company’s targeted markets for its AM powder portfolio are tool & die, energy, auto, and agriculture. For more information on NanoSteel engineered powders for additive manufacturing, visit https://nanosteelco.com/products/engineered-powders/additive-manufacturing-powders.


Filed Under: 3D printing • additive manufacturing • stereolithography, Industrial automation

 

Related Articles Read More >

PCB mills
Basics of printed circuit board milling machines
September 2020 Special Edition: 2020 Additive Manufacturing Handbook
The Decision-Makers’ Guide to Additive Manufacturing: Explore the essentials of today’s AM environment and improve your results
Top 3 reasons why you should consider additive manufacturing today for production parts

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings