Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

NASA turns to 3D printing for parts for its Rover

By Leslie Langnau | August 6, 2012

With highly custom space vehicles that must sustain human life, stock parts and traditional machining won’t fly. So NASA engineers put 70 3D-printed parts made of ABS, PCABS, and polycarbonate built on a Fortus Production 3D printer on this rover.

An agile white vehicle roams the Arizona desert, maneuvering the unforgiving terrain as the wind and sun beat down and temperatures swing from one extreme to another. NASA astronauts and engineers are test-driving a rover over rocks and sand, up and down hills in an environment that simulates the brutal conditions of Mars.

This is Desert RATS (Research and Technology Studies), and the rover — about the size of a Hummer and boasting a pressurized cabin to support humans in space — is being put to the test. It could ultimately serve one of NASA’s loftiest goals: human exploration of Mars. In the nearer future, similar vehicles might help humans investigate near-earth asteroids.

The rover is integral to NASA’s mission to extend human reach farther into space. Its cabin can accommodate a pair of astronauts for days as they study extraterrestrial surfaces. Its twelve rugged wheels on six axles grapple over irregular, unsure terrain. And its forward-jutting cockpit can tilt down to place its observation bubble low to the ground.

3D Printed Rover Parts

To design such a tenacious and specialized vehicle, NASA engineers drew on ingenuity and advanced technology. For example, about 70 of the parts that make up the rover were built digitally, directly from computer designs, in the heated chamber of a production-grade Stratasys 3D Printer. The process, called Fused Deposition Modeling (FDM) Technology or additive manufacturing, creates complex shapes durable enough for Martian terrain.

When you’re building a handful of highly custom vehicles and subjecting them to otherworldly punishment, stock parts and traditional manufacturing methods aren’t enough. 3D-printed parts on NASA’s rover include flame-retardant vents and housings, camera mounts, large pod doors, a large part that functions as a front bumper, and many custom fixtures. FDM offers the design flexibility and quick turnaround to build tailored housings for complex electronic assemblies. For example, one ear-shaped exterior housing is deep and contorted, and would be impossible — or at least prohibitively expensive — to machine.

For its 3D-printed parts, (see the video) NASA uses ABS, PCABS and polycarbonate materials. The FDM 3D printing method, patented by Stratasys, supports production-grade thermoplastics, which are lightweight but durable enough for rugged end-use parts.

Failure is Not an Option

“You always want it to be as light as possible, but you also want it to be strong enough that it’s got your safety factors, that nobody’s going to get hurt,” NASA test engineer Chris Chapman says. NASA’s mantra regarding human space travel is: Failure is not an option. The journey to space subjects a vehicle to intense stresses, starting with the launch from Earth. “You’re going at several thousand miles per hour just to escape the Earth’s atmosphere. So you’ve got to be able to handle all these vibrations just to get out into space, and the vehicle can’t be damaged,” Chapman says.

NASA engineers also 3D print prototypes to test form, fit and function of parts they’ll eventually build in other materials. This ensures machined parts are based on the best possible design by solving challenges before committing to expensive tooling. “Everyone’s got a budget to deal with, and we’re no different,” says Chapman.

Every day, NASA engineers and their devices bridge the gap between practical concerns such as budget and manufacturability, and the human drive to discover the secrets of unfamiliar worlds — in the workshop, in the desert, and eventually on another planet.

Stratasys Inc.
www.stratasys.com

 

Make Parts Fast

You Might Also Like


Filed Under: Make Parts Fast

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.