Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Networking To Demonstrate Internet In Space

By NASA/Goddard Space Flight Center | July 16, 2018

Share

NASA’s Human Exploration and Operations and Science Mission Directorates are collaborating to make interplanetary internet a reality.

They’re about to demonstrate Delay/Disruption Tolerant Networking, or DTN – a technology that sends information much the same way as conventional internet does. Information is put into DTN bundles, which are sent through space and ground networks to its destination.

Unlike the internet, where data packets are discarded when encountering a disconnection, DTN guarantees delivery even if there are interruptions. If the bundle fails to transmit because of unavailable links, DTN stores the bundles and waits until the next communication path opens. Each DTN node or router can accept custody of the bundle and forward or retransmit the data, eliminating the need for an entire data retransmission from the original source should a disruption occur. This, in turn, saves time and more quickly frees up the limited data memory aboard a spacecraft – an important feature given the large amounts of data collected by satellite instruments.

Data Delivery

The Science Mission Directorate looks forward to incorporating DTN into future missions and has identified the Plankton, Aerosol, Cloud, ocean Ecosystem, or PACE, mission as the first key opportunity to demonstrate this revolutionary capability.  

NASA’s Jet Propulsion Laboratory in Pasadena, California, first tested DTN during a science mission to a comet in 2008. That technology demonstration proved out the capability of DTN as part of the Deep Impact – EPOXI mission. PACE will take an important next step in using DTN as part of daily operations.

“DTN represents a shift in how data will get delivered in the future. I’m delighted PACE will become the first science mission to employ DTN,” said David Israel.

Targeted to launch in the early 2020s, PACE will advance scientists’ ability to assess the health of Earth’s oceans by measuring the distribution of phytoplankton, tiny plants and algae that sustain the marine food web. It will also continue systematic records of key atmospheric variables associated with air quality and Earth’s climate.

Antarctica Demonstration

The decision to infuse DTN on a space platform comes just months after NASA engineers demonstrated the technology from the National Science Foundation’s McMurdo Station in Antarctica — a highly remote location with limited communication infrastructure. The demonstration showed that NASA could operate “internet style” between two endpoints within two different networks that do not have a continuous path between them, Israel said.

DTN could become a communication necessity for all types of terrestrial applications. Any remote location on Earth that has limited network connectivity is a candidate for DTN, Israel said.

NASA plans to build out a Solar System Internet with international partners, beginning with NASA’s Near Earth Network, Space Network and Deep Space Network, Israel added. Both the Solar System Internet concept and DTN are part of NASA’s Decade of Light initiative, through which the agency is developing and refining next-generation communications and navigation technologies for use in future science and exploration missions. Exploration missions will use DTN to expand the network to the Moon, allowing communication between surface and orbiting elements and with Earth. 

“We’re really pushing to get DTN in use,” Israel said. “This is an important first step in that process.”


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings