Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

New Graphene Nano-Ribbons Lend Sensors Unprecedented Sensitivity

By Scott Schrage | October 20, 2017

Pinning DNA-sized ribbons of carbon to a gas sensor can boost its sensitivity far better than any other known carbon material, says a new study from the University of Nebraska-Lincoln.

The team developed a new form of nano-ribbon made from graphene, a 2-D honeycomb of carbon atoms. When the researchers integrated a film of the nano-ribbons into the circuitry of a gas sensor, it responded about 100 times more sensitively to molecules than did sensors featuring even the best-performing carbon-based materials.

“We previously studied sensors based on other carbon-based materials such as graphene and graphene oxide,” said Alexander Sinitskii, associate professor of chemistry at Nebraska. “In the case of graphene nano-ribbons, we were certain that we would see some sensor response, but we did not expect that it would be that much higher than anything we have seen in the past.”

Reporting their findings in the journal Nature Communications, the researchers showed that gas molecules can dramatically alter the electrical resistance of nano-ribbon films. Different gases produced varying resistance signatures, allowing the sensor to distinguish among them.

“With multiple sensors on a chip, we were able to demonstrate that we can differentiate between molecules that have nearly the same chemical nature,” said Sinitskii, a member of the Nebraska Center for Materials and Nanoscience. “For example, we can tell methanol and ethanol apart. So these sensors based on graphene nano-ribbons can be not only sensitive but also selective.”

Sinitskii and his colleagues suspect that the nano-ribbons’ remarkable performance stems partly from an unusual interaction between the ribbons and gas molecules. Unlike its predecessors, the team’s nano-ribbons – which resemble ordered rows of Charlie Brown’s shirt stripes – stand vertically rather than lying flat on a surface. The team has proposed that gas molecules can nudge these rows apart, effectively lengthening the gaps between nano-ribbons that electrons must jump to conduct electricity.

Enter the (benzene) ring

Graphene, whose 2004 discovery eventually earned a Nobel Prize, boasts unmatched electrical conductivity. But the material’s lack of a band gap – which requires electrons to gain energy before jumping from their near orbits around atoms to an outer “conduction band” that drives conductivity – initially prevented researchers from switching off that conductivity. This, in turn, posed challenges to applying graphene in electronics that require adjusting the material’s conductivity at will.

One potential solution involved trimming sheets of graphene down to nanoscopic ribbons that computer simulations suggested would possess the elusive band gap. This proved difficult to do with the atomic precision needed to preserve the properties that made graphene appealing in the first place, so researchers began fabricating ribbons from the bottom up by strategically snapping together molecules on certain types of solid surfaces. Though the process worked – and the resulting ribbons did have a band gap – it limited researchers to fabricating just a few ribbons at a time.

In 2014, Sinitskii pioneered an approach that could mass-produce nano-ribbons in a liquid solution, a vital step toward scaling up the technology for electronic applications. But the films made from these nano-ribbons were not conductive enough to perform electrical measurements. The team’s newest study adapted the original chemical approach by adding benzene rings – circular molecules with six atoms of both carbon and hydrogen – onto either side of a first-generation nano-ribbon. These rings widened the ribbon, reducing its band gap and enhancing its ability to conduct electricity.

“People do not often think of graphene nano-ribbons as a sensor material,” Sinitskii said. “However, the same (property) that makes the nano-ribbons good for devices such as transistors – the ability to change their conductivity by several orders of magnitude – is also what makes them good for sensors.

“It is possible to design many different kinds of graphene nano-ribbons with very diverse properties. Only a few types have been experimentally demonstrated so far, but there are many interesting theoretical predications about ribbons that are yet to be synthesized by chemists. So it is very likely that new nano-ribbons with even better sensor characteristics or other exciting properties will be developed in the near future.”

You Might Also Like


Filed Under: M2M (machine to machine)

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.