Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

New Green Method Could Unlock Bauxite Deposits

By University of Queensland | August 18, 2016

North Queensland has some of Earth’s largest known bauxite deposits, but their potential has largely remained locked in the ground, until now.

A University of Queensland researcher has collaborated with global mining company Rio Tinto to investigate a new way to process bauxite which adds value to the ore and significantly reduces the mine’s environmental impact.

Dr Hong Peng from UQ’s School of Chemical Engineering said the new method turned bauxite ore waste products into usable resources, thereby greatly reducing the by-product residue.

“Bauxite ore is necessary to produce aluminium, which is in many of the products we use every day,” he said.

“Queensland is ideally placed to benefit from this technological improvement as bauxite is abundant in north Queensland and there are already processing facilities and experts established here.

“Now instead of wasting the bauxite ore by-products, we can recover most of the minerals, which also reduces the environmental impact of the mining activity.”

Dr Peng said the new process would make some bauxite deposits feasible to mine, where they had not been so previously.

Bauxite contains between 30 and 54 per cent alumina, which is refined from bauxite ore using what’s known as the Bayer process. This separates alumina from the mixture of various iron oxides, titanium dioxide and aluminosilicate, which is known as the desilication product (DSP).

Using the conventional Bayer process, the DSP crystallises to a fine powder intermingled through the residue, making separation of the components impossible.

“The red mud has to be chemically neutralised and maintained in long-term storage,” Dr Peng said.

However, Dr Peng has been working on a process to control this crystallisation, instead yielding a coarser material, which can be separated and removed.

“The current process wastes a lot of these other minerals and creates bauxite residue,” he said.

“The new method we’re developing has environmental benefits and financial benefits, as the by-products can be sold.”

You Might Also Like


Filed Under: Industrial automation

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.