Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

New Holographic Process Uses Image-Stabilized X-Ray Camera

By Nature Communications | January 7, 2014

Share

A team headed by Stefan Eisebitt has developed a new X-ray holography method that will enable snap-shots of dynamic processes at highest spatial resolution. The efficiency of the new method is based on a X-ray focusing optics being firmly fixed to the object to be imaged. While this approach initially provides a blurry image, this can be focused in the computer based on the hologram information. At the same time, the rigid connection between the object and the focusing optics elegantly solves the problem of vibration induced jitter that plays an enormous role at the nanometer scale.

Prof. Stefan Eisebitt, who heads the division Nanometer and X-Ray Optics at Technische Universität Berlin and  the joint research group Functional Nanostructures at Helmholtz-Zentrum Berlin (HZB), explains: “Just as a fast objective lens on a camera enables you to get a sharp image even under conditions of weak lighting, our optical element here enables the X-ray light to be used more efficiently as well. At the same time, we have firmly coupled this X-ray lens with the object to be imaged so that vibrations no longer have any detrimental influence and the image is stabilized.” As a consequence, low-contrast or moving nanoobjects can be imaged notably better.

For X-ray holography, you need coherent light – light whose electromagnetic waves oscillate synchronously. This is the kind of light produced by lasers or by synchrotron sources like BESSY II. In the holographic process used here, part of the X-ray light falls on the object and part of it carries on through a pinhole aperture placed laterally beside the object to create the reference wave. A hologram is formed by superposing the two waves and recording the result with a detector. A holographic image of the illuminated object is then reconstructed on a computer. However, the pinhole aperture approach has a disadvantage. In order to produce a sharp image, the aperture must be very small, which therefore transmits too little light to create a good image from low-contrast objects or during short exposure times – a dilemma.

Optical element increases brightness

Physicists working with Eisebitt found a solution by using an optical element known as a Fresnel zone plate. This is placed in the plane of the object itself as a substitute for the pinhole aperture and considerably increases the brightness of the reference wave. However, the focal point of this optical element is not in the plane of the object (as the pinhole aperture would be), so that the image is out of focus. In contrast to photography, however, this blur in the image can be precisely corrected for via the information stored in the hologram. Due to the efficiency of the method, exposure times can be significantly reduced, allowing the study of fast dynamic processes.

Test objects to measure the resolution

Ph.D. student Jan Geilhufe worked out this idea and implemented it. He was also the one who introduced the image of a lizard as a filigreed test object. Its outline was reduced by a factor of 10,000 and transferred onto gold foil. “It was important to us to find a test object with some originality for demonstrating how well the method works”, says Geilhufe. The seashell in the centre of the test object displays a section of what is called a Siemens star, a test pattern used to determine spatial resolution. Similar to how the converging rays of a Siemens star can be used to measure how well narrow lines will be reproduced in an image, you can also use the lizard’s tail. With a diameter of six thousandths of a millimeter, the entire test object is about the size of a red blood cell. The smallest resolved structure has a width of no more than 46 nanometers.

X-ray camera with an image stabilizer

The well-known problem of jitter due to vibrations of the object in relation to the optics becomes increasingly dramatic at higher resolution of an optical system. “In current research for high-resolution X-ray imaging, a resolution of less than ten nanometers is the target. That distance is tiny – less than a chain of one hundred single atoms. For that reason, even the smallest fluctuations are noticeable. A streetcar passing by a kilometer away can be a disturbance”, says Geilhufe. “In our process, we have firmly coupled the object to the reference optics so that the lens fluctuates exactly synchronized with the object. We have built an X-ray camera with an image stabilizer, so to speak.”

Eisebitt emphasizes: “The combination of the world-renowned expertise in manufacturing Fresnel zone plates at HZB, together with the structuring flexibility afforded by the “Nano-Workbench” at TU Berlin, has made this progress possible.”

New method will be implemented at BESSY II as part of the RICXS instrument

The work is being published today in Nature Communications. The improvement in imaging efficiency and resulting possibilities for improvement in spatial and temporal resolution promises new insights into dynamic nanoscale processes, such as fastest magnetic switching in data storage. “We hope that our approach is useful for many areas of research and contributes to understanding the world at the nanometer scale”, says Eisebitt. He and his team are looking forward to offering their new holographic technique to researchers from all over the world at BESSY II as part of the RICXS instrument.


Filed Under: Rapid prototyping

 

Related Articles Read More >

PCB mills
Basics of printed circuit board milling machines
Rapid Product Solutions, Inc. enhances its rapid prototyping and production services
Protolabs Launches Production Capabilities for Metal 3D Printing
3D Printer Makes Peacekeeping Missions Cheaper and Repair of Defense Systems Faster

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings